PT <=> \(2x^2+x-3=0\)
<=> \(\left(2x^2-2x\right)+\left(3x-3\right)=0\)
<=> \(2x\left(x-1\right)+3\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(2x+3\right)=0\)
<=> \(\left[{}\begin{matrix}x=1\\x=\frac{-3}{2}\end{matrix}\right.\)
2x2=3-x
⇔2x2+x-3=0
⇔2x2-2x+3x-3=0
⇔2x(x-1)+3(x-1)=0
⇔(2x+3)(x-1)=0
⇔\(\left[{}\begin{matrix}2x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=1\end{matrix}\right.\)
Vậy...