giải các pt
a) \(sin\left(\frac{3\pi}{10}-\frac{x}{2}\right)=\frac{1}{2}sin\left(\frac{\pi}{10}+\frac{3x}{2}\right)\)
b) \(4\left(sin^2x+\frac{1}{sin^2x}\right)+4\left(sinx+\frac{1}{sinx}\right)=7\)
c) \(9\left(\frac{2}{cosx}+cosx\right)+2\left(cos^2x+\frac{4}{cos^2x}\right)=1\)
d) \(2\left(cos^2x+\frac{4}{cos^2x}\right)+9\left(\frac{2}{cosx}-cosx\right)=1\)
giải phương trình
a, \(2\sin\frac{x}{2}\left(\sin\frac{3x}{2}+\cos\frac{3x}{2}\right)=3-4\cos x\)
b, \(\frac{2\cos^2x+\sqrt{3}\sin2x+3}{2\cos^2x.\sin\left(x+\frac{\pi}{3}\right)}=3\left(\tan^2x+1\right)\)
Cho \(tan\left(x+\frac{\Pi}{2}\right)-1=0\) . Tính \(sin\left(2x-\frac{\Pi}{6}\right)\) .
A . \(sin\left(2x-\frac{\Pi}{6}\right)=-\frac{1}{2}\)
B . \(sin\left(2x-\frac{\Pi}{6}\right)=\frac{\sqrt{3}}{2}\)
C . \(sin\left(2x-\frac{\Pi}{6}\right)=-\frac{\sqrt{3}}{2}\)
D . \(sin\left(2x-\frac{\Pi}{6}\right)=\frac{1}{2}\)
Trình bày bài giải chi tiết rồi ms chọn đáp án nha các bạn .
giải các pt
a) \(sin^3x.cosx-sinx.cos^3x=\frac{\sqrt{2}}{8}\)
b) \(sin^3x-cos^24x=sin^25x-cos^26x\)
c) \(\left(2sinx-cosx+1\right)\left(1+cosx\right)=sin^2x\)
d) \(sin7x+sin9x=2\left[cos^2\left(\frac{\pi}{4}-x\right)-cos^2\left(\frac{\pi}{4}+2x\right)\right]\)
Giai các phương trình sau đây :
a/ cos x + cos 3x = cos 2x
b/ cos x - cos 3x = sin x
c/ sin x + sin 2x = sin 3x + sin 4x
d/ sin x - sin 2x = sin 3x - sin 4x
Lưu ý : Có thể sử dụng các công thức sau đây :
sin2u = \(\frac{1-cos2u}{2}\)
cos2u = \(\frac{1+cos2u}{2}\)
cos u + cos v = 2cos \(\frac{u+v}{2}\) . cos \(\frac{u-v}{2}\)
HELP ME !!!!
giải phương trình
\(\sin x\sqrt{1+2\sin x}=\cos2x\)
\(\sin\left(\frac{5x}{2}-\frac{\pi}{4}\right)-\cos\left(\frac{x}{2}-\frac{\pi}{4}\right)=\sqrt{2}\cos\frac{3x}{2}\)
\(3\sqrt{\tan x+1}\left(\sin x+2\cos x\right)=5\left(\sin x+3\cos x\right)\)
\(\sqrt{2}\left(\sin x+\sqrt{3}\cos x\right)=\sqrt{3}\cos2x-\sin2x\)
\(\sin2x\sin4x+2\left(3\sin x-4\sin^2x+1\right)=0\)
\(2\sin\left(\frac{\pi}{4}+x\right)+\sin\left(x-\frac{\pi}{4}\right)=\frac{3\sqrt{2}}{2}\)
\(2\sin\left(\frac{\pi}{4}+x\right)+\sin\left(x-\frac{\pi}{4}\right)=\frac{3\sqrt{2}}{2}\)