Giải: (Theo cách thông thường)
\(2+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{3+\dfrac{1}{4}}}}\)
\(=2+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{\dfrac{13}{4}}}}\)
\(=2+\dfrac{1}{1+\dfrac{1}{1+\dfrac{4}{13}}}\)
\(=2+\dfrac{1}{1+\dfrac{1}{\dfrac{17}{13}}}\)
\(=2+\dfrac{1}{1+\dfrac{13}{17}}\)
\(=2+\dfrac{1}{\dfrac{30}{17}}\)
\(=2+\dfrac{17}{30}\)
\(=\dfrac{77}{30}\)
Vậy ...