a) Ta có \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
=>AH=12cm
Adung định lý Pytago trong tam giác AHC vuông tại H ta có
\(HC=\sqrt{AC^2-AH^2}\)
=>HC=16cm
Chu vi tam giác AHC = AH+AC+HC=12+20+16=48cm
b)Xét tứ giác AMHN ta có
góc MAN=góc AMH =góc HNA=90 độ
=>tứ giác AMHN là hcn
=>AH=MN=12cm
c)xét tam giác AHC vuông tại H ta có:
\(\dfrac{1}{HN^2}=\dfrac{1}{AH^2}+\dfrac{1}{HC^2}\)
=>HN=9,6cm
Xét tam giác MHN vuông tại H ta có : MH=\(\sqrt{MN^2-HN^2}=7,2cm\)
Vậy chu vi tứ giác AMHN=(HN+MH).2=33,6cm
Bài 2:
a) Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=15^2+20^2=625\)
hay BC=25(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}CH\cdot BC=AC^2\\\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}CH=\dfrac{20^2}{25}=\dfrac{400}{25}=16\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Chu vi tam giác AHC là:
\(C_{AHC}=AH+HC+AC=12+16+20=48\left(cm\right)\)