Sửa đề luôn rồi nha
\(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\)(đk: \(x\ge0,x\ne1\))
= \(\frac{1}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(x-1\right)+\left(x-1\right)}=\frac{1}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-1\right)}=\frac{1}{\left(\sqrt{x}+1\right)}-\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\)
= \(\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)^2}-\frac{2}{\left(\sqrt{x}+1\right)^2}=\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}\)