giải các pt
a) \(3cos4x-8cos^6x+2cos^2x+3=0\)
b) \(4+3sinx+sin^3x=3cos^2x+cos^6x\)
c) \(2cos^2x\left(1+tanx.tan\frac{x}{2}\right)=cos2x-3\)
d) \(\frac{\sqrt{3}}{cos^2x}-tanx-2\sqrt{3}=sinx\left(1+tanx.tan\frac{x}{2}\right)\)
giai cac pt
a) \(sin^3\left(x+\frac{\pi}{4}\right)=\sqrt{2}sinx\)
b) \(cos^3x-sin^3x=\sqrt{2}cos\left(x-\frac{\pi}{4}\right)\)
c) \(\frac{1-tanx}{1+tanx}=1+2sinx\)
d) \(\left(1+tanx\right)sin^2x=3sinx\left(cosx-sinx\right)+3\)
giai pt
a) \(cos^3x-sin^3x=\sqrt{2}cos\left(x-\frac{\pi}{4}\right)\)
b) \(\frac{1-tanx}{1+tanx}=1+2sinx\)
c) \(\left(1+tanx\right)sin^2x=3sinx\left(cosx-sinx\right)+3\)
giải các pt
a) \(sin\left(\frac{3\pi}{10}-\frac{x}{2}\right)=\frac{1}{2}sin\left(\frac{\pi}{10}+\frac{3x}{2}\right)\)
b) \(4\left(sin^2x+\frac{1}{sin^2x}\right)+4\left(sinx+\frac{1}{sinx}\right)=7\)
c) \(9\left(\frac{2}{cosx}+cosx\right)+2\left(cos^2x+\frac{4}{cos^2x}\right)=1\)
d) \(2\left(cos^2x+\frac{4}{cos^2x}\right)+9\left(\frac{2}{cosx}-cosx\right)=1\)
Xét tính chẵn, lẻ của các hàm số
1,\(y=cosx+sin^2x\)
2,\(y=sinx+cosx\)
3,\(y=tanx+2sinx\)
4,\(y=tan2x-sin3x\)
5,\(sin2x+cosx\)
6,\(y=cosx.sin^2x-tan^2x\)
7,\(y=cos\left(x-\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{4}\right)\)
8,\(y=\dfrac{2+cosx}{1+sin^2x}\)
9,\(y=\left|2+sinx\right|+\left|2-sinx\right|\)
Giải các pt sau
a, \(\dfrac{1}{sinx}+\dfrac{1}{cosx}=4sin\left(x+\dfrac{\pi}{4}\right)\)
b, \(2sin\left(2x-\dfrac{\pi}{6}\right)+4sinx+1=0\)
c, \(cos2x+\sqrt{3}sinx+\sqrt{3}sin2x-cosx=2\)
d, \(4sin^2\dfrac{x}{2}-\sqrt{3}cos2x=1+cos^2\left(x-\dfrac{3\pi}{4}\right)\)
giải các pt
a) \(cosx+cos3x+\left(cos^4x-sin^4x\right).cos2x=0\)
b) \(cos^2\frac{x}{2}+sin^2x+cos2x=\frac{1}{2}\)
c) \(\left(tanx+cotx\right)^2+\frac{3}{sin2x}-7=0\)
giải các pt
a) \(tanx+tan\left(\frac{2\pi}{3}-3x\right)=0\)
b) \(tan\left(2x-15^o\right)-tanx=0\)
c) \(\frac{tan2x-2}{2tan2x+1}=3\)
d) \(\frac{sinx+\sqrt{3}cosx}{3sinx-\sqrt{3}cosx}=1\)
giải các pt
a) \(sinx+cosx-\sqrt{2}sin2x=0\)
b) \(sin^2x+sin2x=3cos^2x\)
c) \(sinx\left(1-sinx\right)=cosx\left(cosx-1\right)\)
d) \(2\left(sin^3x-cos^3x\right)=\sqrt{3}.cos2x\left(sinx-cosx\right)\)