1/a/ \(\left(\dfrac{2}{5}-3x\right)^2=\dfrac{9}{25}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{5}-3x=\dfrac{3}{5}\\\dfrac{2}{5}-3x=-\dfrac{3}{5}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}3x=-\dfrac{1}{5}\\3x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{15}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
b/ \(\left(\dfrac{2}{3}x-\dfrac{1}{5}\right)^5=\dfrac{1}{243}\)
\(\Leftrightarrow\dfrac{2}{3}x-\dfrac{1}{5}=\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{2}{3}x=\dfrac{8}{15}\)
\(\Leftrightarrow x=\dfrac{4}{5}\)
Vậy .........
2/ a/
Ta có :
\(5^{222}=\left(5^2\right)^{111}=25^{111}\)
\(2^{555}=\left(2^5\right)^{111}=32^{111}\)
Vì \(25^{111}< 32^{111}\Leftrightarrow5^{222}< 2^{555}\)
b/ Ta có :
\(3^{48}=\left(3^4\right)^{12}=81^{12}\)
\(4^{36}=\left(4^3\right)^{12}=64^{12}\)
Vì \(81^{12}>64^{12}\Leftrightarrow3^{48}>4^{36}\)