\(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3-\frac{5}{n-1}\)
=>n-1 \(\in\) Ư(5) = {-5;-1;1;5}
n-1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
Vậy n = {-4;0;2;6}
S = 5+52+53+...+52006
5S = 52+53+54+...+52007
5S - S = (52+53+54+...+52007) - (5+52+53+...+52006)
4S = 52007 - 5
S = \(\frac{5^{2007}-5}{4}\)