a, \(\)Ta có : \(S=5+5^2+5^3+...+5^{2008}\)
\(S=\left(5+5^4\right)+\left(5^2.5^5\right)+...+\left(5^{2005}+2^{2008}\right)\)
\(S=5.\left(1+125\right)+5^2.\left(1+125\right)+...+5^{2005}.\left(1+125\right)\)
\(S=5.126+5^2.126+...+5^{2005}.126\) \(⋮\) \(126\)
b, Vì S là tổng của các lũy thừa có cơ số là là 5 nên mỗi lũy thừa có số tận cùng là 5
=> S có tất cả 2008 số hạng
=> Chữ số tận cùng của S là 0 ( zero)
a, Ta Có :S=5+ 52+ 53+....+ 52008
S=(5+ 54)+ (52+ 55)+.........+ (52005+ 52008)
S= 5(1+ 125)+ 52(1+125)+.......+ 52005( 1+125)
S=126( 5+ 52 + 53+.....+ 52005) chia hết co 126
b, Do S là tổng các lũy thừa có cơ số là 5 nên mỗi lũy thừa đều có tận cùng là 5
Do S có tất cả 2008 số hạng => Chữ số tận cùng của S là 0