Cho x,y là hai số khác nhau thoả : x2+y =y2+x.Tính \(\dfrac{x^2-y^2+2018xy}{xy-2018}\)
cho 3 số thực x, y, z thỏa mãn x+y+z =4,tìm giá trị lớn nhất của biểu thức A = xy+3yz+2zx
\(\dfrac{x^2+xy}{x^3+x^2y+xy^2+y^3}.\left(\dfrac{1}{x-y}-\dfrac{2xy}{x^3-x^2y+xy^2-y^3}\right)\)
P=2x^2-1/x^2+x-x-1/x+3/x+1 a.Rút gọn P b.tìm x để P=0 c.tính giá trị của biểu thức P khi x thoả mãn x^2-x=0
Rút gọn biểu thức:
B=(\(\dfrac{1}{x^2-xy}-\dfrac{3y^2}{x^4-xy^3}-\dfrac{y}{x^3+x^2y+xy^2}\) ) .(\(y+\dfrac{x^2}{x+y}\) )
Rút gọn và Tính giá trị biểu thức
a) (x-y)(x^2+xy+y^2)+2y^3 tại x=2 và y=-3
b) (x+y)(x^2+xy+y^2)-2y^3 tại x=2 và y=-3
CMR: Nếu ba số x,y,z là ba số dương thoả mãn
x3+y3+z3=3xyz thì x=y=z.
Bài 3 :
a) Tìm x biết: (x+2)2 +(x+8)(x+2)
b) Tính giá trị biểu thức : B= (x+y)(x2 – xy + y2) –y3, tại x =10, y = 2021
Bài 3 :
a) Tìm x biết: (x+2)2 +(x+8)(x+2)
b) Tính giá trị biểu thức : B= (x+y)(x2 – xy + y2) –y3, tại x =10, y = 2021
Bài 1: Phân tích đa thức thành nhân tử
a)4(2-x)\(^2\)+xy-2y b)3a\(^2\)x-3a\(^2\)y+abx-aby
Bài 2: Phân tích đa thức thành nhân tử
a)x(x-y)\(^3\)-y(y-x)\(^2\)-y\(^2\)(x-y) b)2ax\(^3\)+6ax\(^2\)+6ax+18a
Bài 3: Phân tích đa thức thành nhân tử
a)x\(^2\)y-xy\(^2\)-3x+3y b)3ax\(^2\)+3bx\(^2\)+bx+5a+5b
Bài 4: Tính giá trị biểu thức
A=a(b+3)-b(3+b) tại a=2003 và b=1997
Bài 5: Tìm x, biết
a)8x(x-2017)-2x+4034=0 b)x\(^2\)(x-1)+16(1-x)=0