\(\sqrt{x^2-1}=x-1\)
\(\Leftrightarrow x^2-1=x-1\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
\(\sqrt{x^2-1}=x-1\)
\(\Leftrightarrow x^2-1=x-1\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
rút gọn
\(\dfrac{9-x}{\sqrt{x}+3}-\dfrac{9-6\sqrt{x}+x}{\sqrt{x}-3}-6\) (với x>_9)
\(\left(\dfrac{2\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)/\left(\dfrac{2\sqrt{x}}{\sqrt{x}+1}-1\right)\) (với x>=0, x#1)
\(\sqrt{x+12+6\sqrt{x+3}}-\sqrt{x+12-6\sqrt{x+3}}\) ( với x>_6)
\(\sqrt{m^2+6m+9}+\sqrt{m^2-6m+9}\) (m bát kì)
\(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\dfrac{x+1}{\sqrt{x}}\)
\(\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}/\dfrac{\sqrt{x}-\sqrt{y}}{x-y}\)
\(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\left(\dfrac{x-1}{\sqrt{x}+1}-2\right)\)
\(\left(\dfrac{\sqrt{x}+2}{3\sqrt{x}}+\dfrac{2}{\sqrt{x}+1}-3\right)/\dfrac{2-4\sqrt{x}}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1-x}{3\sqrt{x}}\)
1)
2)
3)
4)
giải phương trình :a,\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+3-4\sqrt{x-1}}=1\)
b,\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
c,\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
d, \(3+\sqrt{x+2\sqrt{x-1}}=2\sqrt{x-2\sqrt{x-1}}\)
Rút gọn biểu thức:
A=\(\left(\dfrac{2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x-\sqrt{x}}\right).\left(\dfrac{x+\sqrt{x}}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\)với x>0;x\(\ne\)1
Rút gọn:
\(A=\left(\frac{2\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right):\left(\frac{2\sqrt{x}}{\sqrt{x}+1}-1\right)\) với \(x\ge0;x\ne1\)
\(B=\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right):\left(\frac{1}{2\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^2\) với \(x>0;x\ne1\)
Giải PT:
\(2\sqrt{x+2+2\sqrt{x+1}}-\sqrt{x+1}=4\)
\(\sqrt{x}+\sqrt{x+1}=\sqrt{x\left(x+1\right)}\)
\(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
Rút gọn:
P = \(\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{2\sqrt{x}}{\sqrt{x}-1}-\dfrac{3\sqrt{x}-1}{1-x}\right).\left(\dfrac{2}{\sqrt{x}}-\dfrac{2}{x}\right)\)
Giải phương trình:
a) \(\sqrt{x}+\sqrt{x+1}+2\sqrt{x^2+x}=35-2x\)
b) \(\sqrt{x^2+x+7}+\sqrt{x^2+x+2}=\sqrt{3x^2+3x+19}\)
c) \(1-\sqrt{x+\sqrt{1+x}+1}=\sqrt{x+1}\)
d) \(2x^2+\sqrt{1-x}+2x\sqrt{1-x^2}=1\)
Rút gọn các biểu thức sau:
\(C=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{1}}\right):\dfrac{\sqrt{a}+1}{a-1}\)
\(D=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(E=\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1+\dfrac{x-\sqrt{x}}{1-\sqrt{x}}\right)\)
Làm ơn giúp mình với ạ!!mình đang cần gấp lắm!!
Rút gọn biểu thức:
1) \(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\cdot\left(x-1\right)}{\sqrt{x}-1}\)
2) \(P=\left(\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\frac{\left(1-x\right)^2}{2}\)
3) \(B=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\cdot\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)
4) \(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right)\div\left(\frac{1}{\sqrt{a}+1}-\frac{2}{a-1}\right)\)