\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}+\dfrac{1}{2^{50}}\)
\(2A=1+\dfrac{1}{2^1}+...+\dfrac{1}{2^{49}}\)
\(\Rightarrow A=2A-A=\left(1+\dfrac{1}{2^1}+...+\dfrac{1}{2^{49}}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{50}}\right)\)
\(A=1-\dfrac{1}{2^{50}}< 1\)
Vậy A < 1