Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hoàng Vũ

1.Rút gọn

\(A=\left(\frac{2\sqrt[3]{2xy}}{x^2y^2-\sqrt[3]{4}}+\frac{xy-\sqrt[3]{2}}{2xy+2\sqrt[3]{2}}\right)\cdot\frac{2xy}{xy+\sqrt[3]{2}}-\frac{xy}{xy-\sqrt[3]{2}}\)

2. Chứng minh

\(\frac{1}{4+1^4}+\frac{3}{4+3^4}+...+\frac{2n-1}{4+\left(2n-1\right)^4}=\frac{n^2}{4n^2+1}\)

Nguyễn Việt Lâm
5 tháng 7 2020 lúc 11:52

a/ Bạn coi lại đề, \(2\sqrt[3]{2xy}\) hay \(2\sqrt[3]{2}.xy\)

Như đề bạn ghi thì ko rút gọn được

b/ Xét \(\frac{x}{x^4+4}=\frac{x}{x^4+4x^2+4-\left(2x\right)^2}=\frac{x}{\left(x^2+2\right)^2-\left(2x\right)^2}\)

\(=\frac{x}{\left(x^2+2-2x\right)\left(x^2+2+2x\right)}=\frac{1}{4}\left(\frac{1}{x^2+2-2x}-\frac{1}{x^2+2+2x}\right)\)

Thay \(x=2n-1\) ta được:

\(\frac{2n-1}{4+\left(2n-1\right)^4}=\frac{1}{4}\left(\frac{1}{\left(2n-1\right)^2-2\left(2n-1\right)+2}-\frac{1}{\left(2n-1\right)^2+2\left(2n-1\right)+2}\right)=\frac{1}{4}\left(\frac{1}{4\left(n-1\right)^2+1}-\frac{1}{4n^2+1}\right)\)

\(\Rightarrow VT=\frac{1}{4}\left(\frac{1}{4\left(1-1\right)^2+1}-\frac{1}{4.1^2+1}+\frac{1}{4.1^2+1}-\frac{1}{4.2^2+1}+...+\frac{1}{4\left(n-1\right)^2+1}-\frac{1}{4n^2+1}\right)\)

\(=\frac{1}{4}\left(1-\frac{1}{4n^2+1}\right)=\frac{1}{4}\left(\frac{4n^2}{4n^2+1}\right)=\frac{n^2}{4n^2+1}\)


Các câu hỏi tương tự
Nguyễn Đức Anh
Xem chi tiết
fghj
Xem chi tiết
Thùy Minh
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
:vvv
Xem chi tiết
bach nhac lam
Xem chi tiết
le duc minh vuong
Xem chi tiết
Lê Thị Thục Hiền
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết