Bài 1: Mở đầu về phương trình

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Yami Tamashi

1.Giải phương trình nghiệm nghuyên

a)\(x^2-25=\) \(y\left(y+6\right)\)

b)\(x^2+x+6=y^2\)

c)\(x^2-4x=169-5y^2\)

d)\(x^2+13y=100+6xy\)

e)\(x^2-x=6-y^2\)

2.Tìm \(x,y,z,t\)\(\in N\)*

a)\(x+y+z=x.y.z\)

b)\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{1}{t^2}=1\)

c)\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\)

d)\(5\left(xy+yz+zx\right)=4xyz\)

3.Tìm \(x,y\in Z\)

a)\(y^3-x^3=3x\)

b)\(y^3=x^3+x^2+x+1\)

c)\(x^4+y^2+1=y^2\)

Phương An
28 tháng 7 2017 lúc 17:31

\(x^2-25=y\left(y+6\right)\) (1)

\(\Leftrightarrow x^2-y^2-6y-25=0\)

\(\Leftrightarrow x^2-\left(y+3\right)^2=16\)

\(\Leftrightarrow\left(x-y-3\right)\left(x+y+3\right)=16\)

Xét các trường hợp, ta tìm được các no nguyên của pt (1).

\(x^2+x+6=y^2\) (2)

\(\Leftrightarrow4x^2+4x+24=4y^2\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(2y^2\right)=-23\)

\(\Leftrightarrow\left(2x+1-2y\right)\left(2x+1+2y\right)=-23\)

Xét các trường hợp, ta tìm được các no nguyên của pt (2).

\(x^2+13y^2=100+6xy\) (3)

\(\Leftrightarrow x^2-6xy+9y^2+4y^2=100\)

\(\Leftrightarrow\left(x-3y\right)^2+\left(2y\right)^2=0^2+\left(\pm10\right)^2=\left(\pm6\right)^2+\left(\pm8\right)^2\)

Xét các trường hợp, ta tìm được các no nguyên của pt (3).

\(x^2-4x=169-5y^2\) (4)

\(\Leftrightarrow\left(x-2\right)^2+5y^2=173\)

Ta thấy:

\(5y^2\) luôn có chữ số tận cùng là 5 hoặc 0

=> Để thoả mãn pt (4), (x - 2)2 phải có chữ số tận cùng là 8 hoặc 3 (vô lý)

Vậy pt (4) vô n0.

\(x^2-x=6-y^2\) (5)

\(\Leftrightarrow4x^2-4x=24-4y^2\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(2y\right)^2=25=\left(\pm25\right)^2+0^2=\left(\pm3\right)^2+\left(\pm4\right)^2\)

Xét các trường hợp, ta tìm được các no nguyên của pt (5).

Phương An
28 tháng 7 2017 lúc 17:49

\(y^3=x^3+x^2+x+1\left(1\right)\)

Ta có:

\(y^3=x^3+\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>x^3\)

\(\Rightarrow y>x\)

\(\Rightarrow y\ge x+1\)

\(\Rightarrow y^3\ge\left(x+1\right)^3\)

\(\Rightarrow x^3+x^2+x+1\ge x^3+3x^2+3x+1\)

\(\Leftrightarrow2x^2+2x\le0\)

\(\Leftrightarrow2x\left(x+1\right)\le0\)

\(\Rightarrow-1\le x\le0\) mà x là số nguyên

=> x = - 1 hoặc x = 0

(+) x = - 1

VT = 0

=> y = 0 ; x = - 1 (nhận)

(+) x = 0

VT = 1

=> y = 1 ; x = 0 (nhận)

Vậy pt (1) có nonguyên (x ; y) = (0 ; 1) ; (- 1 ; 0)

\(x^4+x^2+1=y^2\) (2)

(+)

\(\left(2\right)\Leftrightarrow y^2=x^4+2x^2+1-x^2\)

\(\Leftrightarrow y^2-\left(x^2+1\right)^2=x^2\)

(+)

\(\left(2\right)\Leftrightarrow x^4+4x^2+4-3x^2-3=y^2\)

\(\Leftrightarrow\left(x^2+2\right)^2-y^2=3\left(x^2+1\right)\)

Ta thấy:

Với mọi \(x\ne0\) thì \(\left(x^2+1\right)^2< y^2< \left(x^2+2\right)^2\) (vô lý)

=> x = 0

=> y = 1 (nhận)

Vậy pt (2) có nonguyên (x ; y) = (0 ; 1)


Các câu hỏi tương tự
juihdfshd
Xem chi tiết
Dưa Trong Cúc
Xem chi tiết
Trần An
Xem chi tiết
Trần An
Xem chi tiết
Tran Thi Loan
Xem chi tiết
Linh Lê
Xem chi tiết
Khánh Linh
Xem chi tiết
Trần Anh Tú
Xem chi tiết
Đõ Phương Thảo
Xem chi tiết