1.Giải phương trình nghiệm nghuyên
a)\(x^2-25=\) \(y\left(y+6\right)\)
b)\(x^2+x+6=y^2\)
c)\(x^2-4x=169-5y^2\)
d)\(x^2+13y=100+6xy\)
e)\(x^2-x=6-y^2\)
2.Tìm \(x,y,z,t\)\(\in N\)*
a)\(x+y+z=x.y.z\)
b)\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{1}{t^2}=1\)
c)\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\)
d)\(5\left(xy+yz+zx\right)=4xyz\)
3.Tìm \(x,y\in Z\)
a)\(y^3-x^3=3x\)
b)\(y^3=x^3+x^2+x+1\)
c)\(x^4+y^2+1=y^2\)
\(x^2-25=y\left(y+6\right)\) (1)
\(\Leftrightarrow x^2-y^2-6y-25=0\)
\(\Leftrightarrow x^2-\left(y+3\right)^2=16\)
\(\Leftrightarrow\left(x-y-3\right)\left(x+y+3\right)=16\)
Xét các trường hợp, ta tìm được các no nguyên của pt (1).
\(x^2+x+6=y^2\) (2)
\(\Leftrightarrow4x^2+4x+24=4y^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(2y^2\right)=-23\)
\(\Leftrightarrow\left(2x+1-2y\right)\left(2x+1+2y\right)=-23\)
Xét các trường hợp, ta tìm được các no nguyên của pt (2).
\(x^2+13y^2=100+6xy\) (3)
\(\Leftrightarrow x^2-6xy+9y^2+4y^2=100\)
\(\Leftrightarrow\left(x-3y\right)^2+\left(2y\right)^2=0^2+\left(\pm10\right)^2=\left(\pm6\right)^2+\left(\pm8\right)^2\)
Xét các trường hợp, ta tìm được các no nguyên của pt (3).
\(x^2-4x=169-5y^2\) (4)
\(\Leftrightarrow\left(x-2\right)^2+5y^2=173\)
Ta thấy:
\(5y^2\) luôn có chữ số tận cùng là 5 hoặc 0
=> Để thoả mãn pt (4), (x - 2)2 phải có chữ số tận cùng là 8 hoặc 3 (vô lý)
Vậy pt (4) vô n0.
\(x^2-x=6-y^2\) (5)
\(\Leftrightarrow4x^2-4x=24-4y^2\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(2y\right)^2=25=\left(\pm25\right)^2+0^2=\left(\pm3\right)^2+\left(\pm4\right)^2\)
Xét các trường hợp, ta tìm được các no nguyên của pt (5).
\(y^3=x^3+x^2+x+1\left(1\right)\)
Ta có:
\(y^3=x^3+\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>x^3\)
\(\Rightarrow y>x\)
\(\Rightarrow y\ge x+1\)
\(\Rightarrow y^3\ge\left(x+1\right)^3\)
\(\Rightarrow x^3+x^2+x+1\ge x^3+3x^2+3x+1\)
\(\Leftrightarrow2x^2+2x\le0\)
\(\Leftrightarrow2x\left(x+1\right)\le0\)
\(\Rightarrow-1\le x\le0\) mà x là số nguyên
=> x = - 1 hoặc x = 0
(+) x = - 1
VT = 0
=> y = 0 ; x = - 1 (nhận)
(+) x = 0
VT = 1
=> y = 1 ; x = 0 (nhận)
Vậy pt (1) có nonguyên (x ; y) = (0 ; 1) ; (- 1 ; 0)
\(x^4+x^2+1=y^2\) (2)
(+)
\(\left(2\right)\Leftrightarrow y^2=x^4+2x^2+1-x^2\)
\(\Leftrightarrow y^2-\left(x^2+1\right)^2=x^2\)
(+)
\(\left(2\right)\Leftrightarrow x^4+4x^2+4-3x^2-3=y^2\)
\(\Leftrightarrow\left(x^2+2\right)^2-y^2=3\left(x^2+1\right)\)
Ta thấy:
Với mọi \(x\ne0\) thì \(\left(x^2+1\right)^2< y^2< \left(x^2+2\right)^2\) (vô lý)
=> x = 0
=> y = 1 (nhận)
Vậy pt (2) có nonguyên (x ; y) = (0 ; 1)