Bài 2: Giải các phương trình sau:
a) \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) b) (x2 – 25) + (x – 5)(2x – 11) = 0
c) (x2 – 6x + 9) – 4 = 0 d) \(\frac{x+3}{x+1}+\frac{x-5}{x}=2\)
Câu 2: Giải phương trình:
a,\(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
b) 2x3 – 5x2 + 3x = 0
c) \(\frac{x}{2x-6}+\frac{x}{2x+2}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
Bài 4: Giải các phương trình sau
a) 4(x+5)(x+6)(x+10)(x+12)=\(3x^2\)
b) \(\frac{1}{x^2-3x+3}+\frac{2}{x^2-3x+4}=\frac{6}{x^2-3x+5}\)
c) \(\frac{4x}{4x^2-8x+7}+\frac{3x}{4x^2-10x+7}=1\)
d) \(\dfrac{2x}{2x^2-5x+3}+\dfrac{13x}{2x^2+x+3}=6\)
bài 3,Giải PT
a,\(\frac{3}{2}.\left(x-\frac{5}{4}\right)-\frac{5}{8}=x\\ \)
b,\(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
c,\(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
1,Giải Pt
a,\(\frac{3x-7}{2}+\frac{x+1}{3}=-16\)
b,\(x-\frac{x+1}{3}=\frac{2x+1}{5}\)
c,\(\frac{7-3x}{12}+\frac{3}{4}=2\left(x-2\right)+\frac{5\left(5-2x\right)}{6}\)
e,\(\frac{3\left(x+3\right)}{4}+\frac{1}{2}=\frac{5x+9}{3}-\frac{7x-9}{4}\)
Giải các bất phương trình sau :
a) \(15-2x\left(1-x\right)< 2x^2-4x+5\)
b) \(x^2-\frac{x\left(3x+2\right)}{3}< \frac{x-6}{3}\)
c) \(1+\frac{x+4}{3}< x-\frac{x-3}{2}\)
d) \(\left(\frac{2x+1}{2}\right)^2+\frac{3x\left(1-x\right)}{3}-\frac{5x}{4}\le1\)
Giải các phương trình và bất phương trình sau:
a, \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)
b, \(\frac{2x\left(x^2+1\right)-x^2-4}{3}+x\left(x^2-x+1\right)>\frac{5x^2+5}{3}\)
Giải các phương trình
a) \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\)
b) \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
c) \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
d) \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)
Giải các phương trình:
\(a,\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
\(b,\frac{1}{x^2-5x+6}+\frac{2}{x^2-8x+15}+\frac{3}{x^2-13x+40}=\frac{6}{5}\)