1)Ta có: \(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Điều ngược lại cũng đúng:
Vì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\left(a+b\right)\left(c-a\right)=\left(c+a\right)\left(a-b\right)\)
mà \(ac\)-\(a^2-bc-ab=ac+a^2-bc-ab\)
=>2bc=\(2a^2\) =>\(a^2=bc\) (đpcm)
Ý thứ 2 bạn nhân vế 1 với x, nhân vế 2 với y, nhân vế 3 với z.
Cộng lại với nhau sẽ được bz=cy; cx=az; ay=bx
=>\(\frac{b}{c}=\frac{z}{y}\) ; \(\frac{c}{a}=\frac{x}{z}\) => \(\frac{b}{y}=\frac{c}{z}\) ; \(\frac{c}{z}=\frac{a}{x}\) =>\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\) (đpcm)