cho ba số thực a,b,c dương thỏa mãn abc=1. chứng minh rằng a/(2b+a) + b/(2c+b) +c/(2a+c) ≥ 1
Cho hai số nguyên dương a, b thỏa mãn a2 chia hết cho b, b3 chia hết cho a2, a4 chia hết cho b3, ... Chứng minh rằng : a = b
Cho a, b là 2 số tự nhiên thỏa mãn: \(2a^2\) + \(a^2\)= \(3b^2\) + \(b^2\)
CMR : a-b và 2a + 2b + 1 là các số chính phương
Cho hai số nguyên dương a, b thỏa mãn (a + b, ab - 1) = (a - b, ab + 1) = 1. Chứng minh rằng : (a2 + 1)(b2 + 1) không là số chính phương.
Câu 1: Cho \(x^2-6x+1=0\).Tính giá trị biểu thức B=\(\frac{x^4+8x^2+1}{x^2}\)
Câu 2:
a/ Rút gọn biểu thức P=\(\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\). Trong đó a,b,c là các số đôi 1 phân biệt.
b/ Cho đa thức f(x) có bậc lớn hơn 1, có hệ số nguyên thỏa mãn f(5) chia hết cho 7, f(7) chia hết cho 5. CMR: f(12) chia hết cho 35
Câu 3: Cho các số x,y là các số thỏa mãn \(3x^2+x=4y^2+y\).CMR:
Cho các số a, b, c dương nguyên đôi một khác nhau và thỏa mãn:
\(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\)
Chứng minh A=abcd là số chính phương
Cho các số a, b, c nguyên dương, phân biệt sao cho :
\(\left\{{}\begin{matrix}c\left(a-b\right)^2+b\left(c-a\right)^2+a\left(b-c\right)^2⋮a+b\\a+b\in P\end{matrix}\right.\)(P là tập hợp các số nguyên tố)
Chứng minh rằng : a, b, c không là độ dài 3 cạnh tam giác.
1.Cho a,b,c >0. Chứng minh rằng:
\(\frac{4a^2+\left(b-c\right)^2}{2a^2+b^2+c^2}+\frac{4b^2+\left(c-a\right)^2}{2b^2+c^2+a^2}+\frac{4c^2+\left(a-b\right)^2}{2c^2+a^2^{ }+b^2}\ge3\)2.
Cho x,y,z là các số thực thỏa mãn 2 (y2 + yz + z2) + 3x2= 36. Tìm giá trị nhỏ nhất và lớn nhất của biểu thức A = x + y + z
17) Tìm giá trị nguyên của x để phân thức M có giá trị là 1 số nguyên:
M= \(\frac{10x^2-7x-5}{2x-3}\)
23) Cm rằng
a) \(a^2+b^2-2ab\ge0\)
b) \(\frac{a^2+b^2}{2}\ge ab\)
c) \(a\left(a+2\right)< \left(a+1\right)^2\)
d) \(m^2+n^2+2\ge2\left(m+n\right)\)
e) \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\) (với a>0, b>0)
25) Cho a>b hãy cm
a) a+2>b+2
b) -2a-5<-2b-5
c) 3a+5>3b+2
d) 2-4a<3-4b