17) Tìm giá trị nguyên của x để phân thức M có giá trị là 1 số nguyên:
M= \(\frac{10x^2-7x-5}{2x-3}\)
23) Cm rằng
a) \(a^2+b^2-2ab\ge0\)
b) \(\frac{a^2+b^2}{2}\ge ab\)
c) \(a\left(a+2\right)< \left(a+1\right)^2\)
d) \(m^2+n^2+2\ge2\left(m+n\right)\)
e) \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\) (với a>0, b>0)
25) Cho a>b hãy cm
a) a+2>b+2
b) -2a-5<-2b-5
c) 3a+5>3b+2
d) 2-4a<3-4b
17) \(\frac{10x^2-7x-5}{2x-3}\) là số nguyên khi 10x² - 7x - 5 \(⋮\) 2x - 3
Ta có: 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7
\(\Rightarrow\) 10x² - 7x - 5 \(⋮\) 2x - 3 khi và chỉ khi 7 chia hết cho 2x-3
\(\Rightarrow\) 2x - 3 \(\in\) Ư(7) \(\Leftrightarrow\) 2x - 3 = \(\left\{-1;1;-7;7\right\}\)
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là \(\left\{-2;1;2;5\right\}\)
23) Cm rằng
a) a2+b2−2ab ≥0
Ta có: a2+b2−2ab = a2−2ab+b2 = (a - b)2 ≥ 0 (đpcm)
b)\(\frac{a^2+b^2}{2}\) ≥ ab
Ta có: (a-b)2 ≥0 vs mọi a,b
\(\Leftrightarrow\) a2−2ab+b2 ≥0
\(\Leftrightarrow\) a2+b2 ≥ 2ab
\(\Leftrightarrow\) \(\frac{a^2+b^2}{2}\) ≥ ab (đpcm)
c) a(a+2)<(a+1)2
Ta có: a(a+2)= a2+2a
(a+1)2 = a2 + 2a + 1
\(\Rightarrow\) a(a+2)<(a+1)2 (đpcm)
d) m2+n2+2 ≥ 2(m+n)
Ta có: (m-n)2 \(\ge\) 0
\(\Leftrightarrow\) m2- 2mn+n2 \(\ge\) 0
\(\Leftrightarrow\) m2+n2 \(\ge\) 2mn
\(\Leftrightarrow\) m2+n2+2 \(\ge\) 2mn+2
\(\Leftrightarrow\) m2+n2+2 ≥ 2(m+n) (đpcm)
e) (a+b)(\(\frac{1}{a}+\frac{1}{b}\))≥4 (với a>0, b>0)
Ta có: (a - b)2 ≥ 0
\(\Leftrightarrow\) a2−2ab+b2 ≥ 0
\(\Leftrightarrow\) a2+2ab - 4ab+b2 ≥ 0
\(\Leftrightarrow\) (a + b)2 - 4ab≥ 0
\(\Leftrightarrow\) (a + b)2 ≥ 4ab
\(\Leftrightarrow\) \(\frac{\left(a+b\right)^2}{ab}\) ≥ 4
\(\Leftrightarrow\) (a+b) ( \(\frac{a+b}{ab}\) ) ≥ 4
\(\Leftrightarrow\) (a+b)(\(\frac{1}{a}+\frac{1}{b}\))≥4 (vs a,b > 0) (đpcm)
25,
\(a,a>b\Leftrightarrow a+2>b+2\)
\(b,a>b\Leftrightarrow-2a< -2b\)
\(\Leftrightarrow-2a-5< -2b-5\)
\(c,a< b\)
\(\Leftrightarrow3a>3b\)
lại có: \(5>2\)
\(\Rightarrow3a+5>3b+2\)
\(d,a>b\)
\(\Leftrightarrow-4a< -4b\)
mà 2 < 3
\(\Leftrightarrow2-4a< 3-4b\\ \)