1.)Cho tam giác ABC nhọn (AB<AC) , đường tròn tâm O đường kính BC cắt các cạnh AB và AC lần luợt tại F và E . Gọi H là giao điểm của CF và BE.
a.) c/m : BFC=90 độ và các tứ giác BFEC , AFHE nội tiếp
b.) AH cắt BC tại D .c/m : tứ giác BFHD nội tiếp Và FC là tia phân giác của góc DFE.
c.) c/m : 4 điểm F , E , O , D cùng thuộc một đường tròn
d.) Gọi I là trung điểm của AH . c/m : IF , IE là tiếp tuyến của đường tròn (O).
2.) Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD , BE , CF cắt nhau tại H .
a.) c/m : tứ giác AEHF , tứ giác BFHD nội tiếp đường tròn.
b.) c/m : tứ giác BFEC nội tiếp và HB.HE=HF.HC
c.) c/m : FH là tia phân giác của góc DFE
d.) Gọi M là giao điểm của CH và DE . C/m : MD.FE=ME.FD
3.) Cho (P) : y = x2 và (D) : y = 4x - 4
a.) Vẽ đồ thị (P) và (D) trên cùng một mặt phẳng tọa độ
b.) Tìm tọa độ giao điểm của (P) và (D) bằng phép toán
4.) Cho pt x2 - (5m-1)x + 6m2 - 2m = 0
a.) Cm PT luôn luôn có ngiệm với mọi m
b.) Tìm m để pt có hai nghiệm thỏa x12 + x22 = 1
Câu 3
a) Tự vẽ
b) Phương trình hoành độ giao điểm của d) & (P) là
\(x^2=4x-4\)
\(\Rightarrow x^2-4x+4=0\)
\(\Rightarrow\left(x-2\right)^2=0\)
\(\Rightarrow x=2\Rightarrow y=4\)
Vậy tọa độ giao điểm là (2;4)
Câu 4
a) \(\Delta=\left(5m-1\right)^2-4\left(6m^2-2m\right)=25m^2-10m+1-24m^2+8m\)
\(=m^2-2m+1=\left(m-1\right)^2\ge0\)
Vì \(\Delta\ge0\) nên pt có nghiệm với mọi m
b)
\(\left\{{}\begin{matrix}x_1+x_2=5m-1\\x_1x_2=6m^2-2m\end{matrix}\right.\)
\(x_1^2+x^2_2=1\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
\(\Leftrightarrow\left(5m-1\right)^2-2\left(6m^2-2m\right)=1\)
\(\Leftrightarrow25m^2-10m+1-12m^2+4m-1=0\)
\(\Leftrightarrow13m^2-6m-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=\frac{3+\sqrt{22}}{13}\\m=\frac{3-\sqrt{22}}{13}\end{matrix}\right.\)