1.Cho biểu thức:
\(M=\frac{3}{229}\left(2+\frac{1}{433}\right)-\frac{1}{229}.\frac{432}{433}-\frac{4}{229.433}\)
a,Đặt \(a=\frac{1}{229},b=\frac{1}{433}\) ,rút gọn M theo a,b
b, Tính giá trị của M.
2. Tính giá trị của biểu thức: \(P=x^4-17x^3+17x^2-17x+20\)khi x=16
3 Chứng tỏ rằng các biểu thức sau ko phụ thuộc vào giá trị của biến x:
\(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)
4. Biến tổng sau thành tích: a(x-y)+b(y-x)
5.Nhân các lũy thừa có cùng cơ số
a,\(a.a^2.a^3.a^4a^5.a^6...a^{150}\)
b, \(x^{2-k}.x^{1-k}.x^{2k-3}\)\(\left(k\in N,x\ne0\right)\)
6. Xét biểu thức:
\(P=x\left(5x+15y\right)-5y\left(3x-2y\right)-5\left(y^2-2\right)\)
a, Rút gọn P
b, Có hay k cặp số (x,y) để P=0; P=10?
7.Cho \(\Delta\)ABC nhọn. Vẽ ra phía ngoài của tam giác vuông cân ABE tại B và tam giác vuông cân ACF tại C. Trên tia đối của tia AH lấy điểm I sao cho AI=BC(H là chân đường vuông góc hạ từ A tới BC. Chứng minh:
a, \(\Delta\) ABI = \(\Delta\) BEC
b, BI=CE và BI vuông góc vs CE
c, 3 đường thẳng AH,CE và BF đồng quy tại 1 điểm
Mọi ng giải hộ mik mấy bài này vs ạ, bài nào mấy bạn giải đc thì giải hộ vs ạ . Giải chi tiết nha. Cảm ơn ạ
Bài 1:
a) Đặt \(a=\dfrac{1}{229},b=\dfrac{1}{433}\), ta được
\(M=3a\left(2+b\right)-a\left(1-b\right)-4ab\)
\(M=6a+3ab-a+ab-4ab\)
\(M=5a\)
b) Ta có:
\(M=5a\)
\(M=\dfrac{5}{229}\)
Bài 2:
\(x=16\)
\(\Rightarrow x+1=17\left(1\right)\)
Thay (1) vào P, ta được:
\(P=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+1+3\)
\(P=x^4-x^4-x^3+x^3+x^2-x^2-x+x+1+3\)
\(P=4\)
Bài 3:
\(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)
\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)
\(=-24\)
Vậy biểu thức không phụ thuộc vào x
Bài 4:
\(a\left(x-y\right)+b\left(y-x\right)\)
\(=a\left(x-y\right)-b\left(x-y\right)\)
\(=\left(x-y\right)\left(a-b\right)\)
Bài 5:
a) \(a.a^2.a^3.a^4.a^5a^6...a^{150}\)
\(=a^{1+2+3+4+5+6+...+150}\)
Đặt \(A=1+2+3+...+150\)
\(A=\dfrac{150-1+1}{2}\left(1+150\right)\)
\(A=75.151\)
\(A=2265\)
Vậy 1 + 2 + 3 +...+ 150 = 2265 (1)
Thay (1) vào ta được
\(a^{1+2+3+4+5+6+...+150}=a^{2265}\)
b) \(x^{2-k}.x^{1-k}.x^{2k-3}\)
\(=x^{2-k+1-k+2k-3}\)
\(=x^0\)
\(=1\)
Bài 6:
a) \(P=x\left(5x+15y\right)-5y\left(3x-2y\right)-5\left(y^2-2\right)\)
\(P=5x^2+15xy-15xy+10y^2-5y^2+10\)
\(P=5x^2+5y^2+10\)
b) \(P=0\)
\(\Rightarrow5x^2+5y^2+10=0\)
\(\Rightarrow5\left(x^2+y^2+2\right)=0\)
\(\Rightarrow x^2+y^2+2=0\)
\(\Rightarrow x^2+y^2=-2\)
Vì \(x^2\ge0\)
\(y^2\ge0\)
\(\Rightarrow x^2+y^2\ge0\)
Mà \(x^2+y^2=-2\)
=> Không tồn tại cặp số x và y để P = 0
\(P=10\)
\(\Rightarrow5x^2+5y^2+10=10\)
\(\Rightarrow5x^2+5y^2=0\)
\(\Rightarrow5\left(x^2+y^2\right)=0\)
\(\Rightarrow x^2+y^2=0\)
Vì \(x^2\ge0\) với mọi x
\(y^2\ge0\) với mọi y
\(\Rightarrow x^2+y^2\ge0\)
Mà \(x^2+y^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)