Ta có: a + b + c = 0
⇒ a + b = -c ⇒ (a + b)3 = (-c)3
⇒ a3 + b3 + 3ab(a + b) = -c3 ⇒ a3 + b3 + 3ab(-c) + c3 = 0
⇒ a3 + b3 + c3 = 3abc
a+b+c=0
\(\Rightarrow\)(a+b+c)\(^3\)=0
\(\Rightarrow\)a\(^3\)+b\(^3\)+c\(^3\)+3a\(^2\)b+3ab\(^2\)+3b\(^2\)c+3bc\(^2\)+3a\(^2\)c+3ac\(^2\)+6abc=0
\(\Rightarrow\)a\(^3\)+b\(^3\)+c\(^3\)+(3a\(^2\)b+3ab\(^2\)+3abc)+(3b\(^2\)c+3bc\(^2\)+3abc)+(3a\(^2\)c+3ac\(^2\)+3abc)-3abc=0
=>a\(^3\)+b\(^3\)+c\(^3\)+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc
Do a+b+c=0
=>a\(^3\)+b\(^3\)+c\(^3\)=3abc(ĐPCM)
Ta có
a3 + b3 + c3= 3abc
⇒(a+b)3 − 3ab(a+b) + c3 − 3abc = 0
⇒(a + b + c)[(a + b)2 − (a + b)c + c2] − 3ab(b + c + a)=0
⇒(a + b + c)(a2 + b2 + c2 − ab − bc − ca)=0
Mà đẳng thức (a+b+c)(a2+b2+c2 - ab - bc ca ) = 0 đúng vì a+b+c = 0
=> a3+b3+c3=3abc
Theo đề ta có:
\(a+b+c=0\) \(\Rightarrow
c=-(a+b) (1)\)
Thay \((1)\) vào \( a^3+b^3+c^3\) ta có:
\(a^3+b^3+[-(a+b)]^3=3ab[-(a+b)]\\
\Leftrightarrow a^3+b^3-(a+b)=-3ab(a+b)\\
\Leftrightarrow a^3+ b^3- a^3 -3a^2b- 3ab^2- b^3= -3a^2b- 3ab^2\\
\Leftrightarrow 0= 0
\)
Vậy ta có đpcm.