1.a.Cho biểu thức \(M=\dfrac{\left(x-1\right).\sqrt{3}}{\sqrt{x^2-x+1}}\).Tính giá trị của biểu thức khi \(x=2+\sqrt{3}\)
b.Cho a,b,c là các số dương và \(\dfrac{a}{b}=\dfrac{c}{d}\).Hãy trục căn thức khỏi mẫu số của biểu thức sau
\(\dfrac{1}{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}\)
c.Tính tổng S=\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{1994}+\sqrt{1995}}\)
Từ đó suy ra rằng A=\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{1994}}>86\)
d.Cho \(t=\left|x\right|.\sqrt{4-x^2}\).Tìm GTLN của t là giá trị tương ứng của x
a: \(=\dfrac{\left(2+\sqrt{3}-1\right)\cdot\sqrt{3}}{\sqrt{7+4\sqrt{3}-2-\sqrt{3}+1}}\)
\(=\dfrac{\left(\sqrt{3}+1\right)\cdot\sqrt{3}}{\sqrt{6+3\sqrt{3}}}=\left(\sqrt{3}+1\right)\cdot\sqrt{\dfrac{1}{2\sqrt{3}+3}}\)
\(=\left(\sqrt{3}+1\right)\cdot\sqrt{\dfrac{\sqrt{3}\left(2-\sqrt{3}\right)}{3}}\)
\(=\left(\sqrt{3}+1\right)\cdot\sqrt{\dfrac{2-\sqrt{3}}{\sqrt{3}}}\)
\(=\sqrt{\dfrac{\left(2-\sqrt{3}\right)\left(4+2\sqrt{3}\right)}{\sqrt{3}}}\)
\(=\sqrt{\dfrac{8-6}{\sqrt{3}}}=\sqrt{\dfrac{2\sqrt{3}}{3}}\)
c: \(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}+...-\sqrt{1994}+\sqrt{1995}\)
\(=\sqrt{1995}-1\)