2: \(\dfrac{\sqrt{12}-\sqrt{5}}{\sqrt{2}-1}-\dfrac{1}{\sqrt{5}-2}\)
\(=\left(2\sqrt{3}-\sqrt{5}\right)\left(\sqrt{2}+1\right)-\sqrt{5}-2\)
\(=2\sqrt{6}+2\sqrt{3}-\sqrt{10}-\sqrt{5}-\sqrt{5}-2\)
\(=2\sqrt{6}+2\sqrt{3}-\sqrt{10}-2\sqrt{5}-2\)
3: \(=2\cdot3\sqrt{3}-6\cdot\dfrac{1}{\sqrt{3}}+2-\sqrt{3}-3\sqrt{3}\)
\(=6\sqrt{3}-2\sqrt{3}+2-4\sqrt{3}=2\)
1) \(\dfrac{3+\sqrt{3}}{\sqrt{5}}-\dfrac{2}{\sqrt{3}-1}\)
\(=\dfrac{\sqrt{5}\cdot\left(3+\sqrt{3}\right)}{\sqrt{5}\cdot\sqrt{5}}-\dfrac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=\dfrac{3\sqrt{5}+\sqrt{15}}{5}-\dfrac{2\left(\sqrt{3}-1\right)}{3-1}\)
\(=\dfrac{3\sqrt{5}+\sqrt{15}}{5}-\left(\sqrt{3}-1\right)\)
\(=\dfrac{3\sqrt{5}+\sqrt{15}-5\sqrt{3}+5}{5}\)
2) \(\dfrac{\sqrt{12}-\sqrt{5}}{\sqrt{2}-1}-\dfrac{1}{\sqrt{5}-2}\)
\(=\dfrac{\left(2\sqrt{3}-\sqrt{5}\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}-\dfrac{\sqrt{5}+2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\)
\(=\dfrac{2\sqrt{6}+2\sqrt{3}-\sqrt{10}-\sqrt{5}}{2-1}-\dfrac{\sqrt{5}+2}{5-4}\)
\(=2\sqrt{6}+2\sqrt{3}-\sqrt{10}-\sqrt{5}-\left(\sqrt{5}+2\right)\)
\(=2\sqrt{6}+2\sqrt{3}-\sqrt{10}-2\sqrt{5}-2\)
3) \(2\sqrt{27}-6\sqrt{\dfrac{1}{3}}+\dfrac{1}{2}+\dfrac{\sqrt{3}-9}{\sqrt{3}}\)
\(=2\cdot3\sqrt{3}-\dfrac{6}{\sqrt{3}}+\dfrac{1}{2}+\dfrac{\sqrt{3}\left(1-3\sqrt{3}\right)}{\sqrt{3}}\)
\(=6\sqrt{3}-\dfrac{\sqrt{3}\cdot2\sqrt{3}}{\sqrt{3}}+\dfrac{1}{2}+1-3\sqrt{3}\)
\(=6\sqrt{3}-2\sqrt{3}+\dfrac{1}{2}+1-3\sqrt{3}\)
\(=\dfrac{1}{2}+1+\sqrt{3}\)
\(=\dfrac{3}{2}+\sqrt{3}\)