\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
= \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}\)+...+\(\dfrac{1}{99}-\dfrac{1}{100}\)
= \(\dfrac{1}{2}-\dfrac{1}{100}\)
= \(\dfrac{49}{100}\)
\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{99.100}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{2}-\dfrac{1}{100}\)
\(=\dfrac{49}{100}\)