Bài 6: Hệ thức Vi-et và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cao Lê Trúc Phương

12 Cho phương trinh : \(x^2-2x-\sqrt{3}+1=0\) Không giải phương trinh , hãy tính giá trị biểu thức M = \(x^2_1x_2^2-2x_1x_2-x_1-x_2\)

Nguyễn Ngô Minh Trí
19 tháng 1 2023 lúc 8:44

\(x^2-2x-\sqrt{3}+1=0\)

\(\Delta=b^2-4ac=4-4\left(-\sqrt{3}+1\right)=4\sqrt{3}>0\)

\(\rightarrow\)Phương trình có 2 nghiệm phân biệt

Theo vi-ét ta có :

\(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=2\\P=x_1x_2=\dfrac{c}{a}=-\sqrt{3}+1\end{matrix}\right.\)

\(M=x_1^2x_2^2-2x_1x_2-x_1-x_2\)

\(=\left(x_1x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)\)

\(=\left(-\sqrt{3}+1\right)^2-2\left(-\sqrt{3}+1\right)-2\)

\(=0\)


Các câu hỏi tương tự
illumina
Xem chi tiết
Uyên
Xem chi tiết
sky12
Xem chi tiết
Uyên
Xem chi tiết
Chanhh
Xem chi tiết
Uyên
Xem chi tiết
Cao Lê Trúc Phương
Xem chi tiết
Thy Vân Nguyễn
Xem chi tiết
Bảo Trân
Xem chi tiết