Phương trình có 2 nghiệm
Theo Vi-ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=\dfrac{2}{3}\end{matrix}\right.\)
Ta có: \(A=x_1^3+x_1x_2+x_2^3-x_1x_2=\left(x_1+x_2\right)\left(x_1^2+x^2_2-x_1x_2\right)\)
\(=\left(x_1+x_2\right)\left[\left(x_2+x_1\right)^2-3x_2x_1\right]=4\cdot\left(4^2-3\cdot\dfrac{2}{3}\right)=56\)