cho tam giác ABC vuông tại A (AC>AB). vẽ đường cao AH. trên tia đối của tia BC lấy điểm K sao cho KH=HA. qua K kẻ đường thẳng song song với AH, cắt đường thẳng AC tại P.
a,chứng minh tam giác AKC đồng dạng với tam giác BPC
b, gọi Q là trung điểm của BP. Chứng minh tam giác BHQ đồng dạng với tam giác BPC
c, tia AQ cắt BC tại I. chứng minh AH/HB - BC/IB = 1
Câu 1:Cho góc xOy trên tia Ox lấy A , trên tia Oy lấy điểm B sao cho OA=OB . Qua trung điểm C của đoạn OA kẻ đường thẳng song song với AB cắt OB tại E . Chứng minh tứ giác ACEB là hình thang cân .
Câu 2: Cho góc xOy có số đo 700 , điểm A nằm trong góc đó . Vẽ điểmB đối xứng với A qua Ox , điểm C đối xứng với A qua Oy .
a) So sánh độ dài OB và OC .
b) Tính góc BOC
Câu 3: Cho tam giác ABC cân tại A , đường cao AH . Trên cạnh AB lấy điểm I , trên cạnh AC lấy điểm K sao cho AI = AK . Chứng minh rằng điểm I đối xứng với điểm K qua AH .
Câu 4: Cho tứ giác ABCD gọi E,F,G,H lần lượt là trung điểm của AB ,BC,CD,DA
a) Chứng minh rằng AM // CN
b) Kéo dài AM cắt DC tại E . Chứng minh DE = \(\dfrac{1}{2}\)EC.
Cho Δ ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB và AC. a) Chứng minh rằng: Δ AEF Δ ABC. b) Cho AH = 4,8cm; BC = 10cm. Tính SΔAEF? c) Lấy điểm I đối xứng với H qua AB. Từ B kẻ đường vuông góc với BC cắt AI ở K. Chứng minh rằng KC, AH, EF đồng quy tại một điểm.
giúp mình câu c với ạ
[ giúp mình nha ]
Cho tam giác ABC vuông tại A , AH là đường cao . D,E là hình chiếu vuông góc của H trên AB , AC .
a, Chứng mình : Tam giác ABH đồng dạng CAH
b, Chứng minh : AD.AB=AE.AC-AH
c, Chứng minh : Đường trung tuyến CM của tam giác ABC đi qua trung điểm của HE
Cho tam giác ABC vuông tại A, AB , AC, đường cao AH.
a) Chứng minh tam giác HBA đồng dạng với tam giác ABc suy ra AB2 = BH. BC
b) Qua B vẽ đường thẳng song song với AC cắt AH tại D. Chứng minh HA.HB + HC.HD
c) Chứng minh AB2 = AC.BD
d) Gọi K là trung điểm AH. Trên đoạn AC lấy điểm N sao cho góc HBK bằng góc ABN. Gọi M là trung điểm Bd. Chứng minh M, H, N thẳng hàng
Cho ∆ABC vuông tại A có phân giác của góc ABC cắt AC tại D. Từ D vẽ đường thẳng song song BC cắt AB tại M. a) Giả sử AB = 6cm, AD = 3cm, CD = 5cm. Tính BC. Tính tỉ số diện tích của ∆AMD với ∆ABC b) Vẽ DE BC tại E. Chứng minh: ∆AMD ∽ ∆EDC. Từ đó suy ra: c) Từ C vẽ đường thẳng vuông góc với BD cắt BD tại I. Chứng minh: BC^2 = BD.BI + CD.CA
Câu hỏi: Cho tam giác ABC cân tại A có AH là đường cao.Gọi M,N lần lượt là trung điểm của AB và AC.Biết AH = 8cm, BC = 6cm.(cần gấp ạ)
a)Tính độ dài cạnh MN và diện tích tam giác ABC.
b)Gọi E là điểm đối xứng với H qua M. Chứng minh tứ giác AHBE là hình chữ nhật.
c)Gọi F là điểm đối xứng với A qua H. Chứng minh tứ giác ABFC là hình thoi.
d)Biết HK vuông góc với FC tại K. Gọi I là trung điểm của HK. Chứng minh BK ⊥ IF.
Cho hình chữ nhật ABCD có AB = 6cm, BC = 8cm. Vẽ BH vuông góc với AC (H \(\in\) AC )
a) C/m: \(\Delta\)BHC \(\sim\) \(\Delta\)CDA
b) Tính diện tích \(\Delta\)BHC
c) Gọi M, B lần lượt là trung điểm của AH và BH, tia MN cắt BC tại E. Chứng minh \(\Delta\)CEH \(\sim\) \(\Delta\)CMB