1. Tồn tại hay không các số nguyên a, b, c, d sao cho:
abcd - a = 7531; abcd - b = 531;
abcd - c = 31; abcd - d = 1
2. Cho a1, a2, ... , a2003 \(\in\) Z; b1, b2, ... , b2003 là các sắp xếp theo thứ tự khác của các số a1, a2, ... , a2003. Chứng tỏ rằng: P = (a1 - b1) (a2 - b2) ... (a2003 - b2003) là một số chẵn.
1. Giả sử tồn tại a, b, c, d \(\in\) Z sao cho:
abcd - a = 7531; abcd - b = 531;
abcd - c = 31; abcd - d = 1.
Từ abcd - a = 7531 \(\Leftrightarrow\) a (bcd - 1) = 7531
Do đó: a là một số lẻ
mà abcd - b = 531 \(\Leftrightarrow\) b (acd - 1) = 531
Do đó: b là một số lẻ
mà abcd - c = 31 \(\Leftrightarrow\) c (abd - 1) = 31
Do đó: c là một số lẻ
mả abcd - d = 1 \(\Leftrightarrow\) d (abc - 1) = 1
Do đó: d là một số lẻ
Vậy a, b, c, d là các số lẻ nên abcd là số lẻ.
\(\Rightarrow\) Vế trái của các biểu thức đã cho là số chẵn, trong khi đó vế phải là số lẻ. Điều này vô lý.
\(\Rightarrow\) Không tồn tại a, b, c, d \(\in\) Z thỏa mãn đồng thời các biểu thức đã cho.
2. Giả sử P là số lẻ
\(\Rightarrow\) các số a1 - b1; a2 - b2; ... ; a2003 - b2003 là các số lẻ.
Mà 2003 là một số lẻ nên suy ra tổng:
S = (a1 - b1) + (a2 - b2) + ... + (a2003 - b2003) là một số lẻ (1)
Mặt khác:
S = (a1 + a2 + ... + a2003) - (b1 + b2 + ... + b2003)
Do b1, b2, ... , b2003 là một cách sắp xếp khác của các số a1, a2, ... , a2003
\(\Rightarrow\left(a_1+a_2+...+a_{2003}\right)=\left(b_1+b_2+...+b_{2003}\right)\).
Vậy S = 0 (2)
Ta thấy
mình ấn nhầm nút gửi trả lời xin lỗi nhá. Mình trả lời tiếp nhé.
Ta thấy (1) và (2) mâu thuẫn nhau.
Do vậy: P là một số chẵn