1. Tinh:
a) \(4x^2-x^2+8x^2\)
b) \(\dfrac{1}{2}x^2y^2-\dfrac{3}{4}x^2y^2+x^2y^2\)
c) 3y - 7y + 4y - 6y
2. Thu gọn biểu thức sau:
a) \(\left(-\dfrac{2}{3}y^3\right)+3y^2-\dfrac{1}{2}y^3-y^2\)
b) \(5x^3-3x^2+x-x^3-4x^2-x\)
3. Cho đơn thức A = \(5xy^2.\left(\dfrac{1}{2}\right)x^2y^2x\)
a) Thu gọn đơn thức trên
b) Tìm bậc. Xác định hệ số, phần biến
c) Tính giá trị của A khi x =1; y = -1
1) a)
=\(\left(4-1+8\right)x^2=11x^2\)
b) =\(\left(\dfrac{1}{2}-\dfrac{3}{4}+1\right)x^2y^2=\dfrac{3}{4}x^2y^2\)
c) =(3-7+4-6)y=5y 2) a) ...=\(\left[\left(\dfrac{-2}{3}y^3\right)-\dfrac{1}{2}y^3\right]+3y^2-y^2\\ =\left[\left(\dfrac{-2}{3}-\dfrac{1}{2}\right)y^3\right]+\left(3-1\right)y^2=\dfrac{-7}{6}y^3+2y^2\) b) ...=\(\left(5x^3-x^3\right)-\left(3x^2+4x^2\right)+\left(x-x\right)=4x^3-7x^2\) 3) a)A=\(\left(5.\dfrac{1}{2}\right).\left(x.x^2.x\right)\left(y^2.y^2\right)=\dfrac{5}{2}x^4y^4\) b)Vậy Đơn thức A có bậc 8; hệ số là \(\dfrac{5}{2}\); phần biến là \(x^4y^4\) c)Khi x=1;y=-1 thì A=\(\dfrac{5}{2}.1^4.\left(-1\right)^4=\dfrac{5}{2}\)