TH1: \(m=2\)
\(pt\Leftrightarrow-4x+5=0\Leftrightarrow x=\dfrac{5}{4}\)
\(\Rightarrow m=2\) không thỏa mãn yêu cầu bài toán
TH2: \(m\ne2\)
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta'=m^2-\left(m-2\right)\left(m+3\right)>0\\\dfrac{2m}{m-2}>0\\\dfrac{m+3}{m-2}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6-m>0\\\dfrac{2m}{m-2}>0\\\dfrac{m+3}{m-2}>0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m< -3\\2< m< 6\end{matrix}\right.\)
Vậy \(m\in\left(-\infty;-3\right)\cup\left(2;6\right)\)