Đặt P =\(x^2+xy+y^2-3x-3y+2018\)
= \(x^2+\left(xy-3x\right)+y^2-3y+2018\)
= \(x^2+x\left(y-3\right)+y^2-3y+2018\)
= \(x^2+2.x.\dfrac{y-3}{2}+\dfrac{\left(y-3\right)^2}{4}-\dfrac{\left(y-3\right)^2}{4}+y^2-3y+2018\)
= \(\left(x+\dfrac{y-3}{2}\right)^2+\dfrac{-y^2+6y-9+4y^2-12y}{4}+2018\)
= \(\left(x+\dfrac{y-3}{2}\right)^2+\dfrac{3y^2-6y-9}{4}+2011\)
= \(\left(x+\dfrac{y-3}{2}\right)^2+\dfrac{3}{4}\left(y^2-2y-3\right)+2018\)
\(=\left(x+\dfrac{y-3}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2+2015\)
Với mọi x;y có \(\left(x+\dfrac{y-3}{2}\right)^2\ge0\) ; \(\dfrac{3}{4}\left(y-1\right)^2\ge0\)
\(\Rightarrow\left(x+\dfrac{y-3}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2+2015\ge2015\) với mọi x;y
\(\Rightarrow P\ge2015\) với mọi x;y
\(P=2015\Leftrightarrow\) \(\left\{{}\begin{matrix}x+\dfrac{y-3}{2}=0\\y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+y-3=0\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Vậy ......