Cho biểu thức \(P=\left(\sqrt{x}-\dfrac{x+2}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}-4}{1-x}\right)\);\(x\ge0,x\ne1,x\ne4.\)
a) Rút gọn biểu thức P.
b) Tìm giá trị của x để |P| > P
c) Tìm số nguyên x lớn nhất thỏa mãn P < \(\dfrac{1}{2}\)
d) Tìm giá trị nhỏ nhất của biểu thức P.
e) Tìm giá trị nhỏ nhất của biểu thức \(Q=P.\left(2\sqrt{x}+x\right)\)
Cho \(A=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\left(x\ge0,x\ne4\right)\) số giá trị nguyên của x để biểu thức A nhận giá trị nguyên là?
1) Tìm giá trị nhỏ nhất của biểu thức: \(\dfrac{18+10x}{\sqrt{1-x^2}}\left(với-1< x< 1\right)\)
2) Tìm giá trị độ dài của BC biết tam giác ABC có AC=4 , AB=2,25 , Aˆ=2Bˆ
1) Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{x+16}{\sqrt{x}+3}\)
2) Tìm giá trị lớn nhất của biểu thức \(P=\dfrac{\sqrt{x}}{\left(\sqrt{x}+2\right)^2}\)
phương trình (1) \(x^2-2\left(m-1\right)x-\left(m+1\right)=0\)
tìm m để \(\left|x1-x2\right|\) có giá trị nhỏ nhất
Cho tam giác ABC có AB=1,\(\widehat{A}=105o;\widehat{B}=60o\)BE=1(E thuộc BC).Qua E kẻ ED//BC(D thuộc AC)
CMR:\(\dfrac{1}{AC^2}+\dfrac{1}{AD^2}=\dfrac{4}{3}\)
cho biểu thức A= 1 phần 2 căn x - 2 - 1 phần 2 căn x +2 + căn x phần 1-x với x lớn hơn hoặc = 0; x khác 1
a/ rút gọn A
b/tính giá trị của A với x= 4 phần 9
c/ tính giá trị của x để giá trị tuyệt đối của A= 1 phần 3
Công thức Heron dùng để tính diện tích tam giác S=\(\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\), trong đó a, b, c là độ dài ba cạnh \(P=\dfrac{a+b+c}{2}\) là nữa chu vi tam giác. Bạn Như vẽ \(\Delta ABC\) có độ dài 3 cạnh AB=18cm; AC=9cm;BC=\(9\sqrt{7}\)cm. Hãy giúp bạn Như tính diện tích tam giác đó.
Ôn tập:
1. Tìm x, y:
2. Cho \(\Delta\)DMN vuông tại M, biết \(\widehat{D}\)= 37\(^o\) và DN= 10cm. Giải tam giác vuông DMN?
3. Cho \(\Delta\)ABC \(\perp\) tại B, AB= 8cm, \(\widehat{A}\)= 53\(^o\). Giải \(\Delta\)ABC.