1/ Gọi 4 số đó lần lượt là a;b;c;d
3 số đầu là 3 số hạng liên tiếp của CSN \(\Rightarrow ac=b^2\)
Tương tự: \(b+d=2c\) ; \(a+d=32\) ; \(b+c=24\)
\(\Rightarrow a+b+c+d=a+3c=56\Rightarrow a=56-3c\)
\(b+c=24\Rightarrow b=24-c\)
\(\Rightarrow\left(56-3c\right)c=\left(24-c\right)^2\)
Giải pt bậc 2 này ra c sau đó thế ngược lên tìm nốt a;b;d
2. Gọi số hạng đầu của CSN là \(u_1=3\) ; công bội \(q\) và số số hạng là \(n\)
\(u_n=u_1q^{n-1}\Rightarrow3q^{n-1}=1536\Rightarrow q^{n-1}=512\Rightarrow q^n=512q\)
Lại có:
\(S_n=u_1\frac{q^n-1}{q-1}=2047\Rightarrow\frac{3\left(512q-1\right)}{q-1}=2047\)
\(\Rightarrow1536q-3=2047q-2047\Rightarrow q=4\)
Vậy CSN đó có \(u_1=3;q=4\)