1 tập nghiệm S của bất pt \(4^{x+\frac{1}{2}}-5.2^x+2\le0\)
A S=\(\left\{-1;1\right\}\) B=[-1;1] C S= \(\) ( \(-\infty;-1\)] \(\cup\) [\(1;+\infty\) ) D S=(-1;1)
2 Tập nghiệm của bất pt \(log_6\left[x.\left(5-x\right)\right]< 1\)
A (0;2)\(\cup\) (3;5) B (2;3) C (0;5)\\(\left\{2;3\right\}\) D (0;3) \(\cup\) (3;5)
3 tập nghiệm của bất pt \(\left(\sqrt{6}-\sqrt{5}\right)^{x-1}\ge\left(\sqrt{6}+\sqrt{5}\right)^{2x-5}\) là
4 tập nghiệm của bất pt \(\left(\frac{1}{3}\right)^{\sqrt{x+2}}>3^{-x}\) là
A (2;+\(\infty\)) B (1;2) C (1;2] D [2;\(+\infty\) )
5 Giai bất pt \(\left(\frac{3}{4}\right)^{2x-1}\le\left(\frac{4}{3}\right)^{-2x+x}\)
A X\(\ge\)1 B X<1 C X\(\le\) 1 D x>1
6 bất pt \(log_4\left(x+7\right)>log_2\left(x+1\right)\) có tập nghiệm là
A (5;\(+\infty\) ) B (-1;2) C (2;4) D (-3;2)
7 Tìm số nghiệm nguyên dương của bất pt \(\left(\frac{1}{5}\right)^{x^2-2x}\ge\frac{1}{125}\)
8 f(x)=\(x.e^{-3x}\) . tập nghiệm của bất pt \(f^,\) (x)>0
A (0;1/3) B (0;1) C \(\left(\frac{1}{3};+\infty\right)\) D \(\left(-\infty;\frac{1}{3}\right)\)
9 biết S =[a,b] là tập nghiệm của bất pt \(3.9^x-10.3^x+3\le0\) . Tìm T=b-a
10 TẬP nghiệm của bất pt \(log_{\frac{1}{3}}\frac{1-2x}{x}>0\) là
11 có bao nhiêu nghiệm âm lớn hơn -2021 của bất pt \(\left(2-\sqrt{3}\right)^x>\left(2+\sqrt{3}\right)^{x+2}\) là
A 2019 B 2020 C 2021 D 2018
12 Biết tập nghiệm S của bất pt \(log_{\frac{\pi}{6}}\left[log_3\left(x-2\right)\right]>0\) là khoảng (a,b) . Tính b-a
13 tập nghiệm của bất pt \(16^x-5.4^x+4\ge0\)là
14 nếu \(log_ab=p\) hì \(log_aa^2.b^4\)bằng
A 4p+2 B 4p+2a c \(a^2+p^4\) D \(p^4+2a\)
15 cho a,b là số thực dương khác 1 thỏa \(log_{a^2}b+log_{b^2}a=1\) mệnh đề nào đúng
A a=\(\frac{1}{b}\) B a=b C a=\(\frac{1}{b^2}\) D a=\(b^2\)
16 đặt \(2^a=\)3 , khi đó \(log_3\sqrt[3]{16}\) bằng
1.
\(\Leftrightarrow2.4^x-5.2^x+2\le0\)
Đặt \(2^x=t>0\Rightarrow2.t^2-5t+2\le0\)
\(\Rightarrow\frac{1}{2}\le t\le2\Rightarrow\frac{1}{2}\le2^x\le2\)
\(\Rightarrow-1\le x\le1\)
2.
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(5-x\right)>0\\x\left(5-x\right)< 6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}0< x< 5\\\left[{}\begin{matrix}x< 2\\x>3\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}0< x< 2\\3< x< 5\end{matrix}\right.\)
3.
\(\Leftrightarrow1\ge\left(\sqrt{6}+\sqrt{5}\right)^{x-1}.\left(\sqrt{6}+\sqrt{5}\right)^{2x-5}\)
\(\Leftrightarrow\left(\sqrt{6}+\sqrt{5}\right)^{3x-6}\le1\)
\(\Leftrightarrow3x-6\le0\Rightarrow x\le2\)
4.
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\1>3^{-x}.3^{\sqrt{x+2}}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\3^{\sqrt{x+2}-x}< 1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\\sqrt{x+2}-x< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\\sqrt{x+2}\le x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x+2< x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2-x-2>0\end{matrix}\right.\) \(\Rightarrow x>2\)
5.
\(\Leftrightarrow\left(\frac{4}{3}\right)^{2x-1}.\left(\frac{4}{3}\right)^{-2x^2+x}\ge1\)
\(\Leftrightarrow\left(\frac{4}{3}\right)^{-2x^2+3x-1}\ge1\)
\(\Leftrightarrow-2x^2+3x-1\ge0\)
\(\Rightarrow\frac{1}{2}\le x\le1\)
6.
\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\\frac{1}{2}log_2\left(x+7\right)>log_2\left(x+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\\sqrt{x+7}>x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x+7>x^2+2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x^2+x-6< 0\end{matrix}\right.\) \(\Rightarrow-1< x< 2\)
7.
\(\left(\frac{1}{5}\right)^{x^2-2x}\ge\left(\frac{1}{5}\right)^3\)
\(\Leftrightarrow x^2-2x\le3\)
\(\Leftrightarrow x^2-2x-3\le0\Rightarrow-1\le x\le3\)
\(\Rightarrow x=\left\{1;2;3\right\}\Rightarrow\) có 3 nghiệm nguyên dương
8.
\(f'\left(x\right)=e^{-3x}-3xe^{-3x}\)
\(f'\left(x\right)>0\Leftrightarrow e^{-3x}-3xe^{-3x}>0\)
\(\Leftrightarrow e^{-3x}\left(1-3x\right)>0\)
\(\Leftrightarrow1-3x>0\Rightarrow x< \frac{1}{3}\)
9.
Đặt \(3^x=t>0\Rightarrow3t^2-10t+3\le0\)
\(\Leftrightarrow\frac{1}{3}\le t\le3\)
\(\Rightarrow\frac{1}{3}\le3^x\le3\)
\(\Rightarrow-1\le x\le1\) \(\Rightarrow T=2\)
10.
\(\Leftrightarrow0< \frac{1-2x}{x}< 1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{1-2x}{x}>0\\\frac{1-2x}{x}-1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{1-2x}{x}>0\\\frac{1-3x}{x}< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}0< x< \frac{1}{2}\\\left[{}\begin{matrix}x< 0\\x>\frac{1}{3}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\frac{1}{3}< x< \frac{1}{2}\)
11.
\(\Leftrightarrow1>\left(2+\sqrt{3}\right)^x\left(2+\sqrt{3}\right)^{x+2}\)
\(\Leftrightarrow\left(2+\sqrt{3}\right)^{2x+2}< 1\)
\(\Leftrightarrow2x+2< 0\Rightarrow x< -1\)
\(\Rightarrow\) có \(-2+2020+1=2019\) nghiệm
12.
\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\0< log_3\left(x-2\right)< 1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\1< x-2< 3\end{matrix}\right.\)
\(\Rightarrow3< x< 5\Rightarrow b-a=2\)
13.
\(4^x=t>0\Rightarrow t^2-5t+4\ge0\)
\(\Rightarrow\left[{}\begin{matrix}t\le1\\t\ge4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4^x\le1\\4^x\ge4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\le0\\x\ge1\end{matrix}\right.\)
14.
\(log_aa^2b^4=log_aa^2+log_ab^4=2+4log_ab=2+4p\)
15.
\(\frac{1}{2}log_ab+\frac{1}{2}log_ba=1\)
\(\Leftrightarrow log_ab+\frac{1}{log_ab}=2\)
\(\Leftrightarrow log_a^2b-2log_ab+1=0\)
\(\Leftrightarrow\left(log_ab-1\right)^2=0\)
\(\Rightarrow log_ab=1\Rightarrow a=b\)
16.
\(2^a=3\Rightarrow log_32^a=1\Rightarrow log_32=\frac{1}{a}\)
\(log_3\sqrt[3]{16}=log_32^{\frac{4}{3}}=\frac{4}{3}log_32=\frac{4}{3a}\)