1. = \(\dfrac{x+y}{x-y}\)
2. = \(\dfrac{x}{x+3}\)
1. = \(\dfrac{x+y}{x-y}\)
2. = \(\dfrac{x}{x+3}\)
Rút gọn, rồi tính giá trị các phân thức sau : A=\(\dfrac{\left(2x^{2^{ }}+2x^{ }\right)\left(x-2\right)^2}{^{ }\left(x^{3^{ }}-4x\right)\left(x+1\right)}\)với x = \(\dfrac{1}{2}\)
B=\(\dfrac{x^3-x^{2^{ }}y+xy^2}{x^3+y^3}\)với x = -5 , y = 10
rút gọn phân thức \(\dfrac{x^2-xy-6y^2}{x^2-9y^2}\) thu được kết quả là
Rút gọn các biểu thức sau :
a)\(\dfrac{25xy^3\left(2x-y\right)^2}{75xy^2\left(y-2x\right)}\)
b)\(\dfrac{x^2-y^2}{x^2-y^2+xz-yz}\)
c)\(\dfrac{\left(2x+3\right)-x^2}{x^2-1}\)
d)\(\dfrac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}\)
Rút gọn phân thức :
a) \(\dfrac{x^4-y^4}{y^3-x^3}\)
b) \(\dfrac{\left(2x-4\right)\left(x-3\right)}{\left(x-2\right)\left(3x^2-27\right)}\)
c) \(\dfrac{2x^3+x^2-2x-1}{x^3+2x^2-x-2}\)
Rút gọn phân thức :
\(1)\dfrac{x\left|x-2\right|}{x^2-5x+6}\)
\(2)\dfrac{a^{2x}-b^{2x}}{a^x-b^x}\)
Áp dụng quy tắc đổi dấu rồi rút gọn phân thức :
a) \(\dfrac{45x\left(3-x\right)}{15x\left(x-3\right)^3}\)
b) \(\dfrac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}\)
Rút gọn phân thức
\(\dfrac{3^{3x}-3^{3y}}{3^x+3^y}\)
\(\dfrac{2^{4m}-2^{4n}}{2^{2n}+2^{2m}}\)
Rút gọn biểu thức:
\(\dfrac{x^2+xy}{x^2+xy+y^2}\) - [\(\dfrac{x\left(2x^2+xy-y^2\right)}{x^3-y^3}\) - 2 + \(\dfrac{y}{y-x}\)] : \(\dfrac{x-y}{x}\) - \(\dfrac{x}{x-y}\)
rút gọn
\(\left(x-\dfrac{x^2+y^2}{x+y}\right)\left(\dfrac{1}{y}+\dfrac{2}{x-y}\right)\)