1. Rút gọn phân số
a, \(\dfrac{25.\left(-13\right)}{26.35}\)
b, \(\dfrac{\left(-5\right)^3.40.4^3}{135.\left(-2\right)^{14}.\left(-100\right)^0}\)
c, \(\dfrac{-1997.1996+1}{-1995.\left(-1997\right)+1996}\)
2. Tìm x ∈ Z để các phân số sau có giá trị là 1 số nguyên
a, A =\(\dfrac{x-2}{x+3}\)
b, B = \(\dfrac{x^2-1}{x+1}\)
3. Chứng tỏ phân số \(\dfrac{2n+3}{4n+8}\)là phân số tối giản với mọi số tự nhiên n
Bài 2:
a: Để A là số nguyên thì \(x+3-5⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{-2;-4;2;-8\right\}\)
b: Để B là số nguyên thì \(x^2-1⋮x+1\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)⋮x+1\)
hay \(x\ne-1\)