\(P=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{4-\left(2+\sqrt{2+\sqrt{3}}\right)}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{4-\left(2+\sqrt{3}\right)}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}=1\)
b/ \(x=\sqrt[3]{1+\sqrt{65}}+\sqrt[3]{1-\sqrt{65}}\)
\(\Rightarrow x^3=2+3\sqrt[3]{1-65}.x\)
\(\Rightarrow x^3=2-12x\)
\(\Rightarrow x^3+12x=2\)
\(\Rightarrow Q=2+2009=2011\)