áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1x_2=7\\x_1+x_2=3\end{matrix}\right.\)
ta có : \(\left(3x_1+x_2\right)\left(3x_2+x_1\right)=9x_1x_2+3x_1^2+3x_2^2+x_1x_2\)
\(=10x_1x_2+3\left(x_1^2+x_2^2\right)=10x_1x_2+3\left(\left(x_1+x_2\right)^2-2x_1x_2\right)\)
\(=10x_1x_2+3\left(x_1+x_2\right)^2-6x_1x_2=3\left(x_1+x_2\right)^2+4x_1x_2\)
\(=3.\left(3\right)^2+4\left(7\right)=55\)