\(1+\tan^2a=\dfrac{1}{\sin^2a}=1+\dfrac{1}{16}=\dfrac{17}{16}\)
\(\Leftrightarrow\sin^2a=\dfrac{16}{17}\)
\(\Leftrightarrow\cos^2a=\dfrac{1}{17}\)
\(A=2\cdot\sin^2a+\cos^2a=2\cdot\dfrac{16}{17}+\dfrac{1}{17}=\dfrac{33}{17}\)
\(1+\tan^2a=\dfrac{1}{\sin^2a}=1+\dfrac{1}{16}=\dfrac{17}{16}\)
\(\Leftrightarrow\sin^2a=\dfrac{16}{17}\)
\(\Leftrightarrow\cos^2a=\dfrac{1}{17}\)
\(A=2\cdot\sin^2a+\cos^2a=2\cdot\dfrac{16}{17}+\dfrac{1}{17}=\dfrac{33}{17}\)
3) Cho \(\tan\alpha=\dfrac{1}{3}\). Tính giá trị biểu thức \(P=\dfrac{2\sin\alpha+3\cos\alpha}{\sin\alpha-\cos\alpha}\)
Giúp mình với mình tick cho !
Biết \(\tan\alpha=\sqrt{2}\). Tính giá trị của biểu thức \(A=\dfrac{3\sin\alpha-\cos\alpha}{\sin\alpha+\cos\alpha}\) ?
Cho \(\sin\alpha=\dfrac{1}{4}\) với \(90^0< \alpha< 180^0\). Tính \(\cos\alpha\) và \(\tan\alpha\) ?
Biết \(\sin\alpha=\dfrac{2}{3}\). Tính giá trị của biểu thức \(3=\dfrac{\cot\alpha-\tan\alpha}{\cot\alpha+\tan\alpha}\) ?
Cho \(\tan\alpha=-2\sqrt{2}\) với \(0^0< \alpha< 90^0\). Tính \(\sin\alpha\) và \(\cos\alpha\) ?
Chứng minh rằng biểu thức sau đây không phụ thuộc vào \(\alpha\) :
a) \(A=\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2\)
b) \(B=\sin^4\alpha-\cos^4\alpha-2\sin^2\alpha+1\)
\(B=\dfrac{\sin^2\alpha-2.\sin\alpha.\cos\alpha+3.\cos^2\alpha}{2.\sin^2\alpha+\sin\alpha.\cos\alpha-2\cos^2\alpha}\)
Rút gọn biểu thức \(P=\dfrac{1}{\sin\alpha.\sin2\alpha}+\dfrac{1}{\sin2\alpha.\sin3\alpha}+.....+\dfrac{1}{\sin n\alpha.\sin\left(n+1\right)\alpha}\)
(Giúp mik với !!!)
Cho \(\cos\alpha=-\dfrac{\sqrt{2}}{4}\). Tính \(\sin\alpha\) và \(\tan\alpha\) ?