\(\widehat{BAC}=120^0\Rightarrow\widehat{A_3}=60^0\left(kebu\right)\)
\(\Rightarrow\widehat{A_1}=\widehat{A_2}=\widehat{A_3}=60^0\left(1\right)\)
xét \(\Delta ABD\) co BE là phân giác trong góc B,AE là phân giác ngoài góc A (do (1))\(\Rightarrow DE\) phải là phân giác ngoài góc D (t/c p/g)
\(\Rightarrow\widehat{D_1}=\widehat{D_2}\)
\(\Rightarrow\widehat{BED}=\widehat{D_2}-\widehat{B_2}=\dfrac{\widehat{ADC}-\widehat{B}}{2}=\dfrac{\widehat{A_1}}{2}=\dfrac{60^0}{2}=30^0\)