\(p=\frac{a-1+2}{a-1}=1+\frac{2}{a-1}\)
Để p là SNT thì trước hết p là số tự nhiên \(\Rightarrow\frac{2}{a-1}\in N\Rightarrow a-1=Ư\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow a=\left\{-1;0;2;3\right\}\)
Thay a vào biểu thức ban đầu thì chỉ \(a=\left\{2;3\right\}\) thỏa mãn, mà \(\left\{2;3\right\}\) đều là số nguyên tố nên a là SNT
2/ ĐKXĐ:...
\(\Leftrightarrow x^6\left(\sqrt{x+8}-3\right)+2019\left(x-1\right)=0\)
\(\Leftrightarrow\frac{x^6\left(x-1\right)}{\sqrt{x+8}+3}+2019\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{x^6}{\sqrt{x+8}+3}+2019\right)=0\)
\(\Rightarrow x=1\) (ngoạc phía sau luôn dương)
3/
\(x^2+\left(y-3\right)x+y^2-3y+3=0\)
Coi pt trên là pt bậc 2 ẩn x, tham số y, để pt có nghiệm x nguyên thì \(\Delta\) không âm và là số chính phương
\(\Delta=\left(y-3\right)^2-4\left(y^2-3y+3\right)\ge0\)
\(\Leftrightarrow-3y^2+6y-3\ge0\Leftrightarrow-3\left(y-1\right)^2\ge0\)
\(\Rightarrow y=1\Rightarrow x^2-2x+1=0\Rightarrow x=1\)
Vậy pt có cặp nghiệm nguyên duy nhất \(\left(x;y\right)=\left(1;1\right)\)