1. Cho hai phương trình: \(x^2-\left(m+2\right)x+3m-1=0\)và \(x^2-\left(2m+3\right)x+3m+3=0\)
Tìm m để hai phương trình có nghiệm chung
2. Cho \(f\left(x\right)=x^2+bx+c\).Biết rằng \(\left(b+1\right)^2>4\left(b+c+1\right)\). Chứng minh phương trình
\(f\left[f\left(x\right)\right]=x\)có 4 nghiệm phân biệt
1,Giải sử x0 là nghiệm chung của hai pt
Ta có hệ: \(\left\{{}\begin{matrix}x_0^2-\left(m+2\right)x_0+3m-1=0\left(1\right)\\x_0^2-\left(2m+3\right)x_0+3m+3=0\end{matrix}\right.\)
=> \(\left(2m+3\right)x_0-\left(m+2\right)x_0+3m-1-3m-3=0\)
<=> \(x_0\left(m+1\right)-4=0\)
Do hai pt có nghiệm chung => \(x_0\in R\) => \(m\ne-1\)
<=> \(x_0=\frac{4}{m+1}\) thay vào (1) có
\(\frac{16}{\left(m+1\right)^2}-\frac{\left(m+2\right).4}{m+1}+3m-1=0\)
<=> \(\frac{16}{\left(m+1\right)^2}-\frac{4\left(m+2\right)\left(m+1\right)}{\left(m+1\right)^2}+\frac{3m\left(m+1\right)^2}{\left(m+1\right)^2}-\frac{\left(m+1\right)^2}{\left(m+1\right)^2}=0\)
<=> \(16-4\left(m^2+3m+2\right)+3m\left(m^2+2m+1\right)-\left(m^2+2m+1\right)=0\)
<=> \(16-4m^2-12m-8+3m^3+6m^2+3m-m^2-2m-1=0\)
<=> \(3m^3+m^2-11m+7=0\)
<=> \(3m^3-3m^2+4m^2-4m-7m+7=0\)
<=>\(3m^2\left(m-1\right)+4m\left(m-1\right)-7\left(m-1\right)=0\)
<=> \(\left(m-1\right)\left(3m^2+4m-7\right)=0\)
<=> \(\left(m-1\right)^2\left(3m+7\right)=0\)
<=> \(\left[{}\begin{matrix}m=1\\m=-\frac{7}{3}\end{matrix}\right.\)
@Nguyễn Việt Lâm
@Lê Thị Thục Hiền
mọi người xem giúp vs!!!
@HISINOMA KINIMADO
@Phạm Minh Quang
@https://hoc24.vn/hoi-dap/question/866592.html