1/ Cho \(\dfrac{a}{x}\) = \(\dfrac{b}{y}\) = \(\dfrac{c}{z}\) . CMR \(\dfrac{a+2b-3c}{4a-5b+6c}\) = \(\dfrac{x+2y-3z}{4x-5y+6z}\)
2/ Cho a, b, c là 3 số khác 0 và a\(\ne\)b, a\(\ne\)c, a+c\(\ne\)0
a.CMR nếu a^2 = bc thì \(\dfrac{a+b}{a-b}\) = \(\dfrac{c+a}{c-a}\)
b.CMR nếu \(\dfrac{a+b}{a-b}\) = \(\dfrac{c+a}{c-a}\) thì a^2 = bc
Giúp mình với các bạn
Áp dụng tính chất dãy tỉ số bằng nhau :
a/x=b/y=c/z=a/x=2b/2y=3c/3z=a+2b-3c/x+2y-3z
=>4a/4x=5b/5y=6c/6z=4a-5b+6c/4x-5y+6z
=>a+2b-3c/x+2y-3z=4a-5b+6c/4x-5y+6z=a+2b-3c/4a-5b+6c=x+2y-3z/4x-5y+6z
Vậy ta có điều phải chứng minh
2/ Theo đề bài ta có:
\(^{^{ }a^2}\)=bc=>\(\dfrac{a}{b}\)=\(\dfrac{c}{a}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{a}{b}\)=\(\dfrac{c}{a}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{a}\)=\(\dfrac{a+b}{c+a}\)(*)
=>\(\dfrac{a}{c}\)=\(\dfrac{b}{a}\)=\(\dfrac{a-b}{c-a}\)(**)
Từ (*) và (**) suy ra :
\(\dfrac{a+b}{c+a}\)=\(\dfrac{a-b}{c-a}\)=\(\dfrac{a+b}{a-b}\)=\(\dfrac{c+a}{c-a}\)
Từ đó ta có điều phải chứng minh
b) Theo đề bài ta có:
\(\dfrac{a+b}{a-b}\)=\(\dfrac{c+a}{c-a}\)=>(a+b).(c-a)=(a-b).(c+a)
=>ac-a^2+bc-ab=ac+a^2-bc-ab
=>ac-ac+ab-ab-a^2-a^2=-bc-bc
=>-a^2-a^2= -bc-bc
=>-2a^2=-2bc
=>a^2=bc