Cho ∆ABC,trực tâm H .kẻ Bx vuông góc với AB,Cy vuông góc với AC sao cho Bx Cắt Cy tại một điểm và gọi đó là điểm D
A) Chứng minh tam giác BHCD là hình bình hành
B) Gọi O là trung điểm của BC. Chứng minh H ,O ,D thẳng hàng
1, Cho hình bình hành ABCD . kẻ AH , CK vuông góc với đường chéo BD .
a, Chứng minh AHCK là hình bình hành .
b, Gọi O là giao của AC và BD . Chứng minh H,O,K thẳng hàng
2, cho tam giác ABC có trực tâm H , Kẻ Bx và Cy lần lượt vuông góc với AB , AC . Gọi D là giao của Bx và Cy .
a, chứng minh BHCD là hình bình hành
b, Gọi O là trung điểm của BC . Chứng minh H,O,D thẳng hàng
AI GIẢI GIÚP MÌNH VỚI !!!
Bài 1. Cho tam giác ABC có o A 90 , H là trực tâm. Đường thẳng vuông góc với AB tại B cắt
đường thẳng vuông góc với AC tại C ở điểm I. Chứng minh rằng BICH là hình bình hành.
Bài 2. Cho hình bình hành ABCD. Gọi E, F theo thứ tự là trung điểm của AB, CD. Gọi M là giao
điểm của AF và DE, N là giao điểm của BF và CE. Chứng minh rằng:
a) EMFN là hình bình hành.
b) Các đường thẳng AC, EF, MN đồng quy.
Bài 3. Cho tam giác ABC có trực tâm H, kẻ Bx AB,Cy AC . Gọi D là giao điểm của Bx và
Cy.
a) Chứng minh BHCD là hình bình hành.
b) Gọi O là trung điểm của BC. Chứng minh H, O, D thẳng hàng.
Bài 4. Cho hình bình hành ABCD. Trên đường chéo BD lấy hai điểm E và F sao cho DE = BF
nhỏ hơn 1 BD
2 .
a) Chứng minh AECF là hình bình hành.
b) Gọi M, N lần lượt là giao điểm của AE, CF với DC và AB. Chứng minh AC, BD, MN đồng
quy.
Bài 5. Cho tam giác ABC cân tại A. Gọi D, E, F lần lượt là trung điểm của BC, CA và AB. Trên
tia đối của tia FC lấy H sao cho F là trung điểm của CH, các đường thẳng DE, AH cắt nhau tại I.
Chứng minh rằng các tứ giác BCAH, DCFE là hình bình hành.
Cho tam giác ABC có trực tâm H, kẻ Bx vuông góc AB, Cy vuông góc AC. Gọi D là giao điểm của Bx và Cy.
a) Chứng minh: Tứ giác BHCD là hình bình hành.
b) Gọi O là trung điểm của BC. Chứng minh: OH=OD.
Vẽ hình giúp mình luôn. Cảm ơn.
Cho tam giác ABC và H là trực tâm. Các đường thẳng vuông góc với AB tại B, vuông góc với AC tại C cắt nhau ở D.
CMR a/ BDCH là hình bình hành
b/ góc BAC+góc BDC =900
c/H, M, D thẳng hàng ( M là trung điểm BC )
d/OM=\(\dfrac{1}{2}\)AH ( O là trung điểm AD )
Cho hình thang vuông ABCD ( A = D = 90 ° , CD = 2AB ) . Gọi H là hình chiếu của D lên AC . Gọi M , N lần lượt là trung điểm của HC và HD . a / Chứng minh MN = AB . b / Chứng minh tứ giác ABMN là hình bình hành . c / Chứng minh N là trực tâm tam giác AMD và DMB = 90°
Cho ABC vuông tại A có AH có đường cao. Gọi D là điểm đối xứng của A qua H. Từ D
kẻ đường thẳng song song với AB lần lượt cắt AC và BC tại K và E.
a. Chứng minh tứ giác ABDK là hình thang vuông
b. Chứng minh tứ giác ABDE là hình bình hành
Cho ABC vuông tại A có AH có đường cao. Gọi D là điểm đối xứng của A qua H. Từ D
kẻ đường thẳng song song với AB lần lượt cắt AC và BC tại K và E.
a. Chứng minh tứ giác ABDK là hình thang vuông
b. Chứng minh tứ giác ABDE là hình bình hành
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC.
a/ Chứng minh: Tứ giác BMNP là hình bình hành.
b/ Gọi I là trung điểm của MP. Chứng minh: Ba điểm B, I, N thẳng hàng.