Cho hình thang vuông ABCD ( A = D = 90 ° , CD = 2AB ) . Gọi H là hình chiếu của D lên AC . Gọi M , N lần lượt là trung điểm của HC và HD . a / Chứng minh MN = AB . b / Chứng minh tứ giác ABMN là hình bình hành . c / Chứng minh N là trực tâm tam giác AMD và DMB = 90°
Cho tam giác ABC vuông tại A (AB>AC). Kẻ đường cao AH, gọi M là trung điểm AC.Trên tia đối của tia MH lấy D sao cho MD=MH a) Chứng minh ADHC là hình chữ nhật b) Gọi E là điểm đối xứng C qua H. Chứng minh ADHE là hình bình hành c) Vẽ EK vuông góc AB tại K. Gọi I là trung điểm AK. Chứng minh KE // IH
1.Cho hình bình hành ABCD.Từ B và D kẻ BM và DN vuông góc với AC
a,chứng minh tứ giác BMON là hình bình hành
b,Gọi O là trung điểm của MN. Chứng minh B,O,D thẳng hàng
c,Chứng minh tam giác BMC= tam giác DNA
Cho tam giác ABC có AB<AC, M là trung điểm BC, N là trung điểm đối xứng của A qua D.
a) Chứng minh rằng tứ giác ABNC là hình bình hành
b) Kẻ AH vuông góc với BC. Gọi E, F lần lượt là trung điểm AB, AC. Chứng minh rằng ME=HF suy ra MHEF là hình thang cân.
Cho tam giác ABC vuông tại A đường cao AH kẻ HM vuông góc với AB tại M và HN vuông góc với AC tại N
a, Chứng minh tứ giác amhn là hình chữ nhật
b, lấy điểm K sao cho n là trung điểm của HK Chứng minh tứ giác amnk là hình bình hành
Cho tam giác ABC vuông tại A đường cao AH kẻ HM vuông góc với AB tại M và HN vuông góc với AC tại N
a, Chứng minh tứ giác amhn là hình chữ nhật
b, lấy điểm K sao cho n là trung điểm của HK Chứng minh tứ giác amnk là hình bình hành
cho tam giác ABC có đường cao AH . Gợi E và F theo thứ tự là trung điểm của ACvà HC . gọi D là điển đối xứng của A qua F .
a, chứng minh tứ giác ACDH là hình bình hành
b, chứng minh DC vuông góc với BC
c, chứng minh AB +BC > 2BE
Cho ∆ABC,trực tâm H .kẻ Bx vuông góc với AB,Cy vuông góc với AC sao cho Bx Cắt Cy tại một điểm và gọi đó là điểm D
A) Chứng minh tam giác BHCD là hình bình hành
B) Gọi O là trung điểm của BC. Chứng minh H ,O ,D thẳng hàng
ài 4. (3,5 điểm) Cho hình vuông ABCĐ, O là giao điểm của AC và BD, M là trung điểm của BC. Gọi E
là điểm đối xứng của A qua M.
a) Chứng minh tứ giác ABEC là hình bình hành;
b) Gọi N là trung điểm của CD. Chứng minh tứ giác OMCN là hình vuông:
c) Chứng minh M là trực tâm của tam giác BEN;
d) Gọi / là giao điểm của AC và MN, F là trung điểm AI. Kẻ IK vuông góc với NF tại K.
Chứng mình AKM =90°.