Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhật Hạ

1. Cho biểu thức B :

B= \(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{a-1}\right)\)

a. Rút gọn B

b. Tính giá trị K khi a= \(3+2\sqrt{2}\)

c. Tìm các giá trị của a sao cho K<0

Akai Haruma
13 tháng 7 2018 lúc 16:26

Lời giải:

ĐK: \(a>0; a\neq 1\)

a) \(B=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right): \left(\frac{1}{\sqrt{a}+1}+\frac{2}{a-1}\right)\)

\(B=\left(\frac{a}{a-\sqrt{a}}-\frac{1}{a-\sqrt{a}}\right): \left(\frac{\sqrt{a}-1}{(\sqrt{a}+1)(\sqrt{a}-1)}+\frac{2}{a-1}\right)\)

\(=\frac{a-1}{a-\sqrt{a}}:\left(\frac{\sqrt{a}-1}{a-1}+\frac{2}{a-1}\right)\)

\(=\frac{a-1}{a-\sqrt{a}}: \frac{\sqrt{a}+1}{a-1}=\frac{a-1}{a-\sqrt{a}}.\frac{a-1}{\sqrt{a}+1}=\frac{(a-1)^2}{\sqrt{a}(\sqrt{a}-1)(\sqrt{a}+1)}=\frac{(a-1)^2}{\sqrt{a}(a-1)}=\frac{a-1}{\sqrt{a}}\)

b) Ta có:
\(a=3+2\sqrt{2}=2+1+2\sqrt{2}=(\sqrt{2}+1)^2\)

\(\Rightarrow K=\frac{3+2\sqrt{2}-1}{\sqrt{2}+1}=\frac{2+2\sqrt{2}}{\sqrt{2}+1}=\frac{2(1+\sqrt{2})}{\sqrt{2}+1}=2\)

c) \(K< 0\leftrightarrow \frac{a-1}{\sqrt{a}}< 0\Leftrightarrow a-1< 0\) (do \(\sqrt{a}>0\))

\(\Leftrightarrow a< 1\)

Vậy \(0< a< 1\)


Các câu hỏi tương tự
Han Sara
Xem chi tiết
Ly Ly
Xem chi tiết
Đặng Tuyết Đoan
Xem chi tiết
Ly Ly
Xem chi tiết
Miền Nguyễn
Xem chi tiết
Nguyễn Hoàng trung
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Ly Ly
Xem chi tiết
Ly Ly
Xem chi tiết
kieuvancuong
Xem chi tiết