Bài 1:
Xét ΔABC và ΔCDA có
\(\widehat{BAC}=\widehat{DCA}\)
AC chung
\(\widehat{BCA}=\widehat{DAC}\)
Do đó: ΔABC=ΔCDA
Bài 1:
Xét ΔABC và ΔCDA có
\(\widehat{BAC}=\widehat{DCA}\)
AC chung
\(\widehat{BCA}=\widehat{DAC}\)
Do đó: ΔABC=ΔCDA
Cho tam giác ABC có AB bé hơn AC, AM là tia phân giác của góc A ( M thuộc BC ). Trên tia AC lấy điểm D sao cho AD=AB
a) Chứng minh BM=MD
b) Gọi K là giao điểm của AB và DM. Chứng minh tam giác tam giác DAK=tam giác BAC
c) Chứng minh AM là đường trung trực của đoạn thẳng BD
1. Cho tam giác ABC. Trên các tia đối AB, AC lần lượt lấy các điểm E, F sao cho AE=AC, AF=AB. CM: BC=EF.
2. Cho tam giác ABC có M là trung điểm BC. Trên tia AM lấy điểm D sao cho AM=MD.
a, CM: tam giác ABC = tam giác DMC
b, CM: AB//CD
c, CM: AC = BD
d, CM: tam giác ABC = tam giác DCB
Cho tam giác ABC vuông tại A(AB>AC). M là trung điểm cạnh BC . Trên tia đối của tia MA lấy điểm D sao cho MD=MA. C/m rang a) tam giác MAB= TAM GIÁC MDC b) AB// CD c) AM= 1/2 BC
Cho tam giác ABC có AB=AC và M là trung điểm của BC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE
a) Chứng minh tam giác ABM= tam giác ACM từ đó suy ra AM vuông góc vs BC
b) Chứng minh tam giác ABD= tam giác ACE từ đó suy ra AM là tia phân giác của góc DAE
c) Kẻ BK vuông góc AD( K thuộc AD) trên tia đối của tia BK lấy điểm H sao cho BH=AE, trên tia đối của tia AM lấy điểm N sao cho AN=CE, Chứng minh góc MAD= góc MBH
Cho tam giác ABC có M là trung điểm của cạnh BC . Vẽ tia AM và trên tia đó lấy điểm D sao cho MD = MA ( D khác A )
a, Chứng minh rằng : tam giác AMC = tam giác DMB
b, Chứng minh : AC // BD
1.Cho tam giác ABC có AB<AC. Trên tia AB lấy điểm D sao cho AD = AC,M là trung điểm của CD. a. So sánh tam giác AMD và tam giác AMC. b.AM cắt BC tại N, so sánh NC và ND. . c. Từ B kẻ BH vuông góc với CD(H thuộc CD), chứng minh BH song song AM.
Cho A giác ABC có AB=AC, M là trung điểm BC trên tia đối tia MA lấy điểm D sao cho AM=MD.
a) Chứng minh tam giác ADM= tam giác DCM
b) Chứng minh AB//DC
c) Chứng minh AM vuông góc BC
d) Tìm điều kiện tam giác ABC để góc ADC= 30 độ
1. Cho bốn điểm A, B, C, D sao cho AB//CD và AD//BC. Chứng minh tam giác ABC = tam giác CDA.
2. Cho bốn điểm A, B, C, D sao cho AB//CD và AD//BC. Chứng minh AB = CD.
3. Cho tam giác ABC. Trên các tia đối AB, AC lần lượt lấy các điểm E, F sao cho AE = AC, AF = AC. Chứng minh tam giác ABC = tam giác AFE.
cho tam giác ABC, có AB=AC. M là trung điểm của cạnh BC. Trên tia đối MA lấy D sao cho AM=MD. chứng minh:
a) tam giác ABM = tam giác DCM
b) AM _l_ BC
c) AB // BC
d) tìm điều kiện của tam giác ABC để góc ADC = 36 độ
giúp mới!! mai nộp bài òi.