1: \(=75\left(27+25-2\right)=75\cdot50=3750\)
2: \(=15\left(23+37\right)+55=15\cdot60+55=955\)
3: \(=36\cdot14+36\cdot17+36\cdot69\)
\(=36\cdot100=3600\)
4: \(=200\cdot\left(32+68\right)=200\cdot100=20000\)
1: \(=75\left(27+25-2\right)=75\cdot50=3750\)
2: \(=15\left(23+37\right)+55=15\cdot60+55=955\)
3: \(=36\cdot14+36\cdot17+36\cdot69\)
\(=36\cdot100=3600\)
4: \(=200\cdot\left(32+68\right)=200\cdot100=20000\)
a,x^2.(x-1)-4x^2+8x-4=0 (tìm x)
b,x.(x+2)-(x-3).(x+3)=7.(x-1)
c,5x^2-15=7x-21
hệ tọa độ oxy, cho tam giác ABC có B(2;-1) và C( -1;5) biết diện tích tam giác Abc là 15, AB=5 và BC=3 căn 5, gọi H(x;y) là chân đường cao kẻ từ A tới BC, tính P=x+y
cho \(y=ax^2+bx+c=f\left(x\right)\) có đồ thị đi qua \(A\left(1;8\right),Max=9\) tại x=2
tìm m để
a, \(3\left|f\left(x\right)\right|+m-5=0\) có 3 nghiệm phân biệt
b,\(2f\left(\left|x\right|\right)-7+5m=0\) có 4 nghiệm pb
phương trình nào sau đây vô nghiệm:
x^2 - 4 =0
x^2+x+1=0
căn x =2
x-1=0
tìm tất cả các giá trị của tham số m để bất phương trình sau có No:
\(\sqrt{2+x}+\sqrt{4-x}-\sqrt{8+2x-x^2}\le m\)
Cho \(\overrightarrow{a}=\left(2;1\right);\overrightarrow{b}=\left(3;-4\right);\overrightarrow{c=}\left(-7;2\right)\)
a) Tìm tọa độ của vectơ \(\overrightarrow{u}=3\overrightarrow{a}+2\overrightarrow{b}-4\overrightarrow{c}\)
b) Tìm tọa độ vectơ \(\overrightarrow{x}\) sao cho : \(\overrightarrow{x}+\overrightarrow{a}=\overrightarrow{b}-\overrightarrow{c}\)
c) Tìm các số k và h sao cho : \(\overrightarrow{c}=k\overrightarrow{a}+h\overrightarrow{b}\)
Cho \(\overrightarrow{a}=\left(2;1\right);\overrightarrow{b}=\left(3;-4\right);\overrightarrow{c}=\left(-7;2\right)\)
a) Tìm tọa độ của vectơ \(\overrightarrow{u}=3\overrightarrow{a}+2\overrightarrow{b}-4\overrightarrow{c}\)
b) Tìm tọa độ của vectơ \(\overrightarrow{x}\) sao cho \(\overrightarrow{x}+\overrightarrow{a}=\overrightarrow{b}-\overrightarrow{c}\)
c) Tìm các số k và h sao cho \(\overrightarrow{c}=k\overrightarrow{a}+h\overrightarrow{b}\)
Cho tam giác ABC. Gọi D là điểm xác định bởi : \(\overrightarrow{AD}=\dfrac{3}{4}\overrightarrow{AC}\). I là trung điểm của BD. M là điểm thỏa mãn \(\overrightarrow{BM}=x\overrightarrow{BC},\left(x\in R\right)\)
a) Tính \(\overrightarrow{AI}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b) Tính \(\overrightarrow{AM}\) theo \(x,\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
c) Tính \(x\) sao cho A, I, M thẳng hàng
Cho ba điểm A ; B và điểm C không thẳng hàng , và điểm M thỏa mãn đẳng thức vectơ sau :\(\overrightarrow{MA}=x.\overrightarrow{MB}+y.\overrightarrow{MC}\) .
Tính giá trị của: \(P=x+y\)