`a, ((sqrt a +1)(a - sqrt a + 1))/((sqrt a + 1) - sqrt a) ( a + 2 sqrt a + 1)/(a^2 - 2a + 1) = 1`
`-> (a - sqrt a + 1 - sqrt a) . ((sqrt a + 1)/(a - 1))^2 = 1`
`-> ((sqrt a-1)(sqrta + 1))^2/(a-1)^2 = 1`
`-> (a-1)^2/(a-1)^2 = 1`
`-> 1 = 1`
`b, sqrt(4x^2 - 4x + 2) = sqrt(4x^2 - 4x + 1 + 1) >= sqrt(0 +1) = 1`.
`-> P >= 2016 + 1 = 2017`
Dấu bg xảy ra `<=> x = 1/2`
a: \(=\left(a-\sqrt{a}+1-\sqrt{a}\right)\cdot\left(\dfrac{1}{\sqrt{a}-1}\right)^2\)
\(=\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)^2}=1\)
b: \(P=2016+\sqrt{4x^2-4x+1+1}\)
\(=\sqrt{\left(2x-1\right)^2+1}+2016>=2017\)
Dấu '=' xảy ra khi x=1/2

