\(A=\frac{5(x^2-2x+y^2)}{2(x^2-y^2)}=\frac{5(x-y)^2}{2(x-y)(x+y)}=\frac{5(x-y)}{2(x+y)}=\frac{5(\frac{-1}{2}--3)}{2(\frac{-1}{2}-3)}=\frac{-25}{14}\)
\(B=\frac{3(x^2-4x+4)}{x^2-4}=\frac{3(x-2)^2}{(x-2)(x+2)}=\frac{3(x-2)}{x+2}=\frac{3(\frac{-1}{2}-2)}{\frac{-1}{2}+2}=-5\)
\(C=\frac{(x-5)^2}{2(x-5)(x+5)}=\frac{x-5}{2(x+5)}=\frac{\frac{-3}{2}-5}{2(\frac{-3}{2}+5)}=\frac{-13}{14}\)
\(D=\frac{(x-2)^2}{2x(x-2)}=\frac{x-2}{2x}=\frac{\frac{1}{2}-2}{2.\frac{1}{2}}=\frac{-3}{2}\)
\(E=\frac{(x-3)^2}{3x(x-3)}=\frac{x-3}{3x}=\frac{\frac{-1}{3}-3}{3.\frac{-1}{3}}=\frac{10}{3}\)
\(F=\frac{(3x-1)^2}{(3x-1)(3x+1)}=\frac{3x-1}{3x+1}=\frac{3(-3)-1}{3(-3)+1}=\frac{5}{4}\)